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Executive Summary

Objectives

The focus of this project is to study the impact of co-optimization in improving key challenges
in the CAISO system. The work will include evaluations of co-optimization at CAISO using the
commercial-grade SuperOPF tool for the following applications.

e Co-optimize the objective function and the updated worst scenario for voltage stability.

e Co-optimize the objective function, operational reserve and the renewable energies. In
addition, the ramp rate of renewable energy should be included.

¢ Handling of ramp constraints of generation.

¢ Handling of constraints needed for LMP calculations and outputs needed for the power
market.

The current commercial-grade SuperOPF package is equipped with a commercial power flow
solver and a homotopy-based interior point based solver and supports various industrial-grade
static power system models such as 13,000-bus EMS models. Standard data formats are sup-
ported including the Common Information Model (CIM) and Siemens’s PSS/E data formats.
The current commercial-grade SuperOPFE-VS package is equipped with a commercial voltage
stability solver capable of handling the voltage stability constraint of a large set of contingencies,
such as, 2,500 contingencies. Both SuperOPF and SuperOPF-VS have been extensively evaluated
on practical PJM models and California ISO models with promising results.

The current release of SuperOPF is comprehensive in its modeling capability and able to handle
the following components.

1. Generators that are modeled as active and reactive power sources which also provide
voltage control. The MVAR output of each on-line generator is adjusted during power
flow solutions in order to control the voltage of the local bus (the bus where the genera-
tor is connected) or a remote bus. The generator's MW output has fixed limit. And the
generator's MVAR output is limited by fixed limits defined by the so-called capability
curves.

2. Loads that are modeled as constant power (P-Q), constant current (I), constant imped-
ance (Z), or any linear combination of them. The tool must also accept nonlinear load
models that are expressed as nonlinear functions of voltage.

3. Control Devices: The following control devices are modeled: (i) Switchable shunts and
static VAR compensators, (ii) ULTC Transformers, (iii) ULTC phase shifters, and (iv)
Static tap changers and phase shifters.
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4.

DC Transmission Lines

Deliverables

This project will have the following deliverables:

1. SuperOPF version which can co-optimize the objective function and the updated worst
scenario for voltage stability (requested by CAISO).

2. Demonstrate Deliverable 1 on CAISO system data.

3. SuperOPF version which can co-optimize the objective function, operational reserve and
the renewable energies. In addition, the ramp rate of renewable energy should be in-
cluded.

4. Demonstrate Deliverable 3 on CAISO system data.

5. Commercial-grade Co-optimization SuperOPF software equipped with the ramp con-
straints of generations (requested by CAISO).

6. Demonstrate the Super-OPF with ramping constraints, deliverable 5 on CAISO system
data.

7. Super-OPF software which can handle constraints needed for LMP calculations and
outputs needed for the power market (requested by CAISO).

8. Demonstrate Deliverable 7 on CAISO system data.

9. Regular meetings with CAISO for progress report (including 2 face-to-face meetings).

10. Compile feedback reports from CAISO.

11. Users’ manual for the commercial-grade core Co-optimization SuperOPF software.

12. Design manual for the commercial-grade core Co-optimization SuperOPF software.

13. A final report detailing the relevant results developed in this phase.

Project Status

Date Scheduled Deliverable Status

July 1- August 31, 2014 Deliverables 1 & 2 Delivered as scheduled.
zgiltember 1= October 31, Deliverables 3 & 4 Delivered as scheduled.
November 15, 2014 Deliverable 9, part 1 Delivered as scheduled.
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November 1 - December 31,

2014 Deliverables 5 & 6 Delivered as scheduled.
January 1 - February 15,2015 Deliverables 7 & 8 Delivered as scheduled.
March 15, 2015 Deliverable 9, part 2 Delivered as scheduled.
February 16 - March 30,2015 Deliverables 10, 11, 12 & 13 Delivered as scheduled.
September 10, 2015 Revised Final Report (13) Delivered
July 6, 2015 Supplemental Report Delivered

Note: CAISO legal department was not able to approve disclosure of power market data even in
a highly “sanitized” form for evaluation. Since a good market case could not be provided, BSI
gathered publically available sources of market data in the state of California and applied this
data to a recent on-line CAISO power flow case to create an OPF case with representative data.
Input for this case was based on the date request we compiled by working with CAISO to pro-
duce detailed requirements. A new set of simulations was carried out and a supplementary re-
port regarding the new simulation results was submitted.
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1. Introduction

The optimal power flow (OPF) is relevant in power system operations, scheduling, and plan-
ning. The main objective of the OPF problem is to determine the optimal operation of an electric
power system while satisfying technical and economic constraints. OPF is a cost-effective way
to forecast snapshots of locational marginal prices (LMPs) under various conditions of load and
generation patterns and generator bidding strategies. With the structural deregulation of elec-
tric power systems and prevalence of power markets, OPF is becoming a basic tool for planning
and operations of the power network.

A commercial OPF should have the capability to adjust control variables for both real and reac-
tive power, including SC, ULTC and phase shifters. Moreover, a commercial OPF package
should be comprehensive in its modeling capability and be able to handle the following com-
ponents:

* Generators: modeled as active and reactive power sources which also provide voltage
control. The MVAR output of each on-line generator is adjusted during power flow solu-
tions in order to control the voltage of the local bus (the bus where the generator is con-
nected to) or a remote bus. The generator's MW output has fixed limit. And the genera-
tor's MVAR output is limited by fixed limits the so-called capability curves.

* Loads: modeled as constant power (P-Q), constant current (I), or constant impedance (Z),
or any linear combination of them. The tool can also accept nonlinear load models as
long as they are expressed as nonlinear functions of voltage.

» Control devices: The following control devices are modeled: (i) switchable shunts and
static VAR compensators, (ii) ULTC Transformers, (iii) ULTC phase shifters, and (iv)
static tap changer and phase shifters.

* DC transmission lines.

* Interchange schedules.

For many utilities around the world, there has been considerable pressure to increase power
flows over existing transmission corridors, partly due to economic incentives (a trend towards
deregulation and competition) and partly due to practical difficulties in obtaining authorization
to build power plants and transmission lines (environmental concerns). Therefore, it is crucial
for the OPF solutions to be not only economic and but also secure. A power system is secure if it
is able to maintain a normal and stable operation when encountering contingencies, which are
discrete events such as failure of devices (e.g., lines, generators, shunts, etc.). The “N-1 security”
contingency standard has been established by the North American Electric Reliability Corpora-
tion (NERC) and is required to be complied by utilities.

In the meantime, the drive for cleaner sources of energy has led to the proliferation of renewa-
ble energy sources, such as wind and solar energy, in today’s power systems. However, most of
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these renewable energy sources are inherently stochastic and as a result introduce more uncer-
tainty into the power system. Forecasters, which are constructed based on different disciplines,
are used by power utilities to predict most probable renewable energy outputs in the planning
horizon. These forecasters are never perfect due to the inherent variability of the renewable en-
ergy. On the other hand, power system operations need to be planned to accommodate various
possible scenarios, such that the power system can still operate securely and economically
should any considered scenario occur within the planning horizon. Therefore, power system
computation and analysis, such as voltage stability analysis (VSA), dynamic stability analysis
(DSA) and optimal power flow (OPF) computation, involving probabilistic scenarios become
more and more common because of the increasing penetration of renewable energies into the
power grid.

The stochastic contingency-constrained and renewable energy-constrained AC optimal power
flow (OPF) formulation behind the SuperOPF makes it applicable to a variety of problems aris-
ing in power system planning and operations under deregulation and the power market. The
focus of this project is to study the impact of co-optimization in improving key challenges in the
CAISO system. The work will include evaluations of co-optimization at CAISO using the com-
mercial-grade SuperOPF tool for the following applications.

e Co-optimize the objective function and the updated worst scenario for voltage stability.

e Co-optimize the objective function, operational reserve and the renewable energies. In
addition, the ramp rate of renewable energy should be included.

¢ Handling of ramp constraints of generation.

e Handling of constraints needed for LMP calculations and outputs needed for the power
market.

This project will have the following key deliverables:

1. SuperOPF version which can co-optimize the objective function and the updated worst
scenario for voltage stability (requested by CAISO).

2. Demonstrate Deliverable 1 on CAISO system data.

3. SuperOPF version which can co-optimize the objective function, operational reserve and
the renewable energies. In addition, the ramp rate of renewable energy should be in-
cluded.

4. Demonstrate Deliverable 3 on CAISO system data.

5. Commercial-grade Co-optimization SuperOPF software equipped with the ramp con-
straints of generations (requested by CAISO).

6. Demonstrate the Super-OPF with ramping constraints, deliverable 5 on CAISO system
data.
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10.
11.
12.
13.

Super-OPF software which can handle constraints needed for LMP calculations and
outputs needed for the power market (requested by CAISO).

Demonstrate Deliverable 7 on CAISO system data.

Regular meetings with CAISO for progress report (including 2 face-to-face meetings).
Compile feedback reports from CAISO.

Users” manual for the commercial-grade core Co-optimization SuperOPF software.
Design manual for the commercial-grade core Co-optimization SuperOPF software.

A final report detailing the relevant results developed in this phase.
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2. Co-optimized OPF Analysis

Existing solvers and programs for optimal power flow (OPF) computation are mostly focused
on achieving an optimal solution to the study objective for a single scenario, namely, the base
case system, without considering any uncertainties that might arise during the planning hori-
zon. In fact, with more and more penetrations of renewable energy, whose output is stochastic
in nature, in the power networks and requests for regulatory compliance (such as compliance to
FERC regulations), these uncertainties cannot be neglected any longer. It is crucial for the OPF
solutions to not only be economic for the base-case system, but also maintain economic and se-
cure for the whole planning horizon even if one or more uncertain scenarios (with the largest
probabilities) occur. This motivates the development of the multi-scenario SuperOPF co-
optimization solver and program, considering a comprehensive set of physical and operation
constraints, to address the need of computing OPF solutions involving uncertain scenarios for
power networks nowadays that are operated in a more and more dynamic environment.

2.1 Problem Formulations

Mathematically, OPF is modeled as a nonlinear programming (NLP) problem of the generic
form (2-1),

min, f(x)
s.t h(x)=0
gx) <0 (2-1)

xl < x < x¥

which usually minimizes the total generation dispatch cost, transmission loss, or their combina-
tion subject to a set of equality and inequality constraints. From a computational viewpoint, the
OPF problem is a large-scale non-convex NLP problem, in which both the objective function
and constraint functions can be nonlinear.

More specifically, the conventional OPF formulation is presented with the following notations:
- ng: the number of buses in the system;
- nc: the number of generators in the system;
- L: the set of lines or branches in the system;
- nt: the number of tap-changing transformers in the system;

- np: the number of phase-shifting transformers in the system; and
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- ns: the number of switchable shunt devices in the system.

The overall formulation for an OPF problem can be stated as the following nonlinear optimiza-

tion problem (2-2):

min f(v,6,t,¢,b,P%, Q%
s.t. P(V,0,t,¢,b)+PF—PF=0,i=1,,np
Q:i(V,0,t,¢,b) +Qf —Qf =0,i=1,",np
Sij(V,0,t,¢,b) < (1 +1)S;;,(i,j) €L
S;ii(V,6,t,¢,b) < (1 +1)S;;, (i,)) €L
Vi<V, <V,i=1,-,ng (2-2)
<t <t,i=1,,ng
Pi<pi<Pi=1-"mp
b;<b;<b,i=1,-,ng
D! j=1,-,ng

G G G ; _
Qj SQ] SQ}!]_ f”'lnG

In this formulation,

o V=1, VnB]T is the vector of bus voltage amplitudes with lower bounds V and upper

bounds 7,

0 =16y, BnB]Tthe vector of bus voltage phase angles with lower bounds 8 and upper
bounds 6,

T. o . .
t =[ty, -, ty,] is the vector of tap positions for tap-changing transformers with lower
bounds t and upper bounds t, and

¢ = [q,’)l, T qan]Tthe vector positions for phase-shifting transformers with lower bounds
¢ and upper bounds ¢,

b = [bl,---,bnS]T is the vector of positions for switchable shunts with lower bounds b
and upper bounds b, and

PS =[Py, -+, Py, ] is the vector of real power outputs of generators with lower bounds
P¢ and upper bounds P%and

Q¢ = [le,--',anG] is the vector of reactive power outputs of generators with lower
bounds Q¢ and upper bounds Q°.

P;(V,0,t,¢,b) and Q;(V,0,t, ¢, b) are the real and reactive power injections at the i-th bus
in the system, respectively.
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Sij(V,0,t,¢,b) and S;;(V,0,t, ¢, b) are the power flows transmitted through the branch
connecting i-th and j-th buses, measured at the from-end (i-th bus) and the to-end (j-th)
bus, respectively. S is vector of thermal limit imposed on the transmission lines (branch-
es) in the system.

The central task for the multi-scenario SuperOPF (SuperOPEF-MS) solver is to solve the OPF
problem that will results the best-expected objective (such as the minimum system total power

losses or generation costs) spanning the planning horizon. Therefore, the co-optimization that

needs to be solved in order to get the desired OPF solution can be modeled as the optimization
problem (2-3).

where

min F(x)
s.t. Pi(Vo:90:t0:50:b0)+P})—Pé‘ =0
Q:(Vo, 8o, to, S0, bo) + Qb — Q6o = 0
ﬁ < Sij Vo, 69, Lo, So, bo) < S_U

(K; 9; tl S; b; &) S (Vo, 901 tOI SO; bOI QGO) S (_1 51 E' E: E: Q_G)

Pi(Vklekltlek'bk) + P]_l) — P(l; =0
Qi (Vi, O, tiey Sy by) + @p — Qg = 0
& < SU (Vk,ek,tk,sk, bk) < SU
(K; 9; tl Sl b; &) S (Vkﬁ HkF tk' Sk' bk’ QGk) S (V’E’E' E’B' Q_G)

P, <P, <P;

F(x): the co-optimization objective function;

x = (P, Vo, 00, t0,50, bo, Qco, ***» Vi Ok tie, Sie» bre, Qi ): the vector of optimization variables;
V,8: bus voltage magnitudes and phase angles;

t, s: transformers tap ratios, phase shifting angles, respectively;

b: switchable shunt devices;

P;: real power generations (same for all scenarios);

Q¢: reactive power generations;

(Vo, 89, to, S, bo, Qgo): base-case variables (excluding Pg);

(Vi, Ok, ti, Sk, bi, Qgr): k-th scenario variables (excluding Py);

Sij: line flow for the branch connecting i-th and j-th buses;
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* aand a: the lower and upper bounds for the variable a.

It can be seen from the problem model (2-3) that the optimization problem that needs to be
solved is a very complicated nonlinear optimization problem. The problem size (the number of
optimization variables and the number of equality and inequality constraints) will increase line-
arly as the number of contingent scenarios increases.

It is possible that a solution to the co-optimized OPF problem (2-3) is not achievable, especially
for scenarios with

* Severe contingencies, each of which considers dropping of a single or multiple im-
portant devices (transmission lines, generators, etc.) of the power network;

* Large variations of renewable energy productions;
* The power network is undergoing a heavy loading condition; and
+ Combinations of the above conditions.

To accommodate these situations, extra corrective/preventive controls, which are prepared for
the post-contingency system, are required and need to be involved in the problem formulation.
One type of such corrective/preventive controls is the up-spinning reserve provided by genera-
tors. When these operational generation reserves are considered, the OPF problem to be solved
can be updated to the corresponding reserve-constrained format (2-4).

min F(x) + ¥ri(Ry)
s.t. P;(Vy, 09, to, S0, bo) + P — Pt =0
Q:(Vo, 80, to, S0, bo) + Qh — QG = 0
Sij < Sij (Vo, 80, to, So, bo) < S,

(.0,£,5,5,Q5) < (Vo, 86, to, S0, bo, Qo) < (V. 6,2,5,5, Q)

P;(Vy, Ok, tr, Sk, br) + Ph — Ps — ay R, = 0
Qi Vi, O, tie Sy i) + Qb — QL = 0
Sij < Sij Vi, Okcs tiey Sk bie) < Sy
(Z: 0,t,s,b, &) < (Vi O, tes S bies Q) < (V,6,1,5,b, Q)
P <Pz <Pg

PG+akRGkSP_G
0 < Rgx < Rgx

where, compared to the formulation (2-3), the newly introduced variables are
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* ay: the status (0 or 1 binary constant value) for the availability of reserve of i-th genera-
tor for k-th contingency;

* Ry the up-spinning reserve provided by i-th generator;

«  1;(RL,): the auxiliary term in the objective function for the reserve offered by i-th genera-
tor.

For online applications, the scheduling horizon might be minutes, instead of hours for off-line
planning. During this short scheduling horizon, because of the physical limitations imposed on
them, generators usually cannot exercise the full range of their generation capability. Instead,
the ramping capability of generators needs to be considered in computation. As a result, addi-
tional ramping constraints need to be introduced in the OPF formulation, as described by the
formulation (2-5). This formulation is represented as a single-period co-optimization; therefore,
inter-period ramping constraints are not covered. It needs to be noted that, however, SuperOPF
program is also capable of handling inter-period ramping constraints for multi-time-period co-

optimization.
min F(x) + Zri(Réx)
S.t. Pi(VO;HOﬁtOﬁSO!bO)-I_PDi_Pé:0

Q:(Vo, 60, to, S0, bo) + Q5 — Qbo = 0
Sij =5y (Vo, 8o, to, S0, Do) < Sy

(K’ Q’ £'§' Q’ &) < (VO'HO'tO'SO' bO' QGO) = (7,5,%, E'B'Q_G)

P;(Vy, Ok, tie, S, bk)"‘i'.;)[;)"_ Pé — aywRG =0
Qi (Vie, O ties Sk bi) + Qh — Qi = 0
Sij < i Wi O b St i) < 55
(K' 0,t,s,b, &) < (Vi Ok tior Sk by Q) < (V,6,5,5,b, Q)
max(Pg, Pgo — DR) < Pg < min(Pgo + UR, Pg)

P; 4 ayRgr < min(Pgo + UR, P;)
0 < Rk < Rgie

where, compared to the formulation (2-4), the newly introduced parameters are
* DR and DU: the ramping-down and ramping-up capabilities of the generators in the sys-
tem.
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3. SuperOPF Solution Engine

3.1 Introduction

The optimal power flow (OPF) is relevant in power system operations, scheduling, and plan-
ning. The main objective of the OPF problem is to determine the optimal steady-state operation
of an electric power system while satisfying technical and economic constraints. With the struc-
tural deregulation of electric power systems, OPF is becoming a basic tool in the power market.
Existing solvers and programs for OPF computation are mostly focused on achieving an opti-
mal solution to the study objective for the base case system, without any security considerations.
However, it is crucial for the OPF solutions being not only economic and but also secure. A
widely accepted system security concept is the so-called “N-1 security”, which follows the “N-1”"
contingency standard established by the North American Electric Reliability Corporation
(NERC). Essentially, an electric power system is required to be operated in a way such that it
could survive the occurrence of any single credible contingency where any single component in
the system goes offline suddenly.

In order for them to be applicable for current fast changing and increasingly stressed power sys-
tem operations and for the deregulated power markets, practical OPF solvers must meet the fol-
lowing requirements. Firstly, the OPF solvers are required to have a comprehensive modeling
capability. Different utilities and venders may use different data models for recording and
snapshotting the operating conditions of their systems. Among existing models, the PSS/E
model should be the most widely used in the power industry. Aiming for enhanced exchangea-
bility, recently introduced CIM-compliance model is becoming popular. A practical OPF solver
should be comprehensive and flexible enough to support these data models. Secondly, the OPF
solvers need to be fast. In order for the OPF solvers to be suitable for the fast changing power
system operations, it is a natural requirement that the desired optimal power flow solutions can
be achieved quickly. Thirdly, the OPF solvers are required to be robust. The OPF problem is a
large-scale, constrained, nonlinear optimization problem. The underlying nonlinearity of the
OPF problem renders its feasible region, that is, the set of all operating conditions where all
constraints are satisfied and the optimal solution is contained, to be very complicated. The ro-
bustness requirement suggests that the OPF solver be able to find the optimal solution consist-
ently when an OPF solution exists. Fourthly, the OPF solvers need also to be versatile and flexi-
ble, that is, they can be used to handle different practical problems interested in the power in-
dustry. Specifically, they can optimize real-power related problems, such as the production cost
problem, as well as reactive-power related problems, such as the voltage problem and the
transmission loss problem. Fifthly, the OPF solvers can handle contingencies. A power system
needs to be operated not only optimally, but also securely to survive the occurrence of potential
contingencies. Therefore, it is required that the solvers are able to handle not only the static se-
curity constraints, but also the dynamic security constraints under a large set of contingencies.
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Finally, the OPF solvers need also to embrace stability constraints. Besides the security con-
straints mentioned above, the OPF solution obtained must satisfy the voltage stability, transient
stability and small-signal stability under a large set of contingencies.

To this end, we have developed a commercial-grade OPF package that meets the first through
tifth requirements, and potentially meets the final stability requirement. More specifically, we
have developed a four-stage, homotopy-enhanced OPF solution engine to serve as the kernel to
our package.

3.2  SuperOPF Solution Engine

Mathematically, OPF is modeled as a nonlinear programming (NLP) problem, which usually
minimizes the total generation dispatch cost, transmission loss, or their combination subject to a
set of equality and inequality constraints. From a computational viewpoint, the OPF problem is
a large-scale non-convex NLP problem, in which both the objective function and constraint
functions can be nonlinear.

Referring to the problem formulation (2-2), it is observed that the number of thermal limits is
almost twice the number of the branches in the system and that the thermal limits are the only
source of nonlinear inequality constraints. Simultaneously handling this large number of non-
linear inequality constraints can cause convergence difficulties in finding an OPF solution.

Many current OPF methods treat all of the thermal limits at the same time. In fact, most of the
thermal constraints are inactive throughout the computational procedure. Considering inactive
thermal constraints unnecessarily enlarges the problem size and makes the computation of an
OPF solution hard to converge or even diverge. To overcome these difficulties, two schemes are
developed and incorporated into the proposed four-stage method. The first scheme is the ho-
motopy-enhanced OPF method that starts from a simple OPF problem without considering the
thermal limits and then gradually solves a sequence of homotopied OPF problems until it
solves the original problem that is the hard problem. The second scheme is the active-set tech-
nique that treats the active constraints while the inactive thermal constraints are not included
into the current computation.

A multi-stage, multi-level OPF method has been developed and implemented in the SuperOPF
program. As illustrated in Figure 3-1, this method consists of the following four stages:

- Stage 1: Constraint analysis for improving convergence and avoiding infeasibility.
- Stage 2: Solving the OPF problem without thermal constraints.
- Stage 3: Solving the OPF problem using the proposed homotopy-enhanced solver and the

active set technique.
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- Stage 4: Determine values for discrete control variables.

Initial OPF Sensitivity- | . Optimal
o] com o iz, Bl e Lol L
Flow Analyzer Discretizer Flow

Figure 3-1: The four-stage SuperOPF engine

3.2.1 Stage I: Constraint Analysis

Practical large systems are vulnerable to data or parameter errors, which may result in infeasi-
ble OPF problems and cause the OPF solver diverges. On the other hand, using a feasible point
as the initial point can usually improve the convergence property of the OPF solver. Therefore,
it is desirable to have a dedicated and automatic feasibility analyzer to correct infeasible config-
urations and provide a feasible initial point for the OPF solver. To this end, the first stage of the
SuperOPF solver realizes the procedure of feasibility analysis of the constraints of the OPF
problem (3-1).

Two types of data errors are illustrated here, which have been found in the model data of the
large-scale power systems involved in our numerical simulation.

1) Improper generation upper bounds

The Issue: The upper generation bound is larger than the thermal limit of Line 1 or Line 2, as
shown in the following figure. For this thermal limit constraint, the upper bound of generator 1
is greater than the thermal limit of line 1 so that a continual back-and-forth adjustment of real
power generation at generator 1 can occur. Hence, it may slow down the optimization proce-
dure or it can lead to a divergence.

Correction: Lower the upper bound of generator 1.

Effects: 1) Such corrections result in the same OPF problem with tightened generation bounds
within an allowable range; 2) Such corrections can improve the convergence of the OPF compu-
tation.

Bus 1 Bus 2
Line 1
Generator 1 @ | |
10MW < Pg < 100MW™ | S <80MVA |
-20MVar < Qg < 20MVar
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Figure 3-2: Illustration of improper generation bounds

2) Infeasible generation/thermal limits

Issue: Referring to Figure 3-3, the lower generation limit is larger than the thermal limit of Line 1
or Line 2 so that thermal violation always occurs at Line 2 for any allowable output from the
generator.

Correction: Lower the generation lower bound for Generator 1 or increase the thermal limit im-
posed on Line 2.

Effects: Such correction restores the feasibility of the OPF computation.

Bus 1 Bus 2 Bus 3
Line 1 Line 2
Generator 1 @ | | |
OMW <Pg<100MW™ | SSISOMVA | S<8MVA |
15MVar < Qg < 20MVar

Figure 3-3: Illustration of infeasible generation bounds or thermal limits

The goal of the feasibility analyzer is twofold. For a feasible problem, the feasibility analyzer
will find a feasible solution to the problem first, which will be used as the initial point for the
full OPF problem. For an infeasible OPF problem, the feasibility analyzer will figure out why
the OPF problem is infeasible and what is the minimum effort (constraint relaxation) to restore
feasibility of the problem.

In order to figure out whether the OPF problem is feasible or not, an energy-minimizing prob-
lem is first solved. Using the following general formulation (3-1),

minxz(xs,xc) f(xsrxc)
s.t h(x)=0
gx)<o0

xt < x < x¥

(3-1)

the original nonlinear program of OPF can be transformed to the energy minimization problem:
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min f(x) [| h(x)

I
s.t. h(x) =0 . I 9Co —sg )
g <o > minE@s) = |l 7T G (-2

&SXSE x —x —s2

where, x = (V, 0,t,¢,b, Py, Qg)T is the vector of optimization variables, s = (sg, S, g)T is the vec-
tor of slack variables for equality and inequality constraint, and E(x,s) is the energy function to
be minimized. Obviously, if there is a solution to (3-2) of energy being 0, then the OPF problem
(3-1) is feasible and a feasible point is found; otherwise, the OPF problem (3-1) is infeasible.

3.2.2 Stage 2: OPF without thermal constraints

Thermal limit constraints are the source of nonlinear inequality constraints in the OPF problem
(3-1) and are the most complicated nonlinear constraint in (3-1). To solve the OPF problem (3-1),
other OPF methods usually consider all thermal limits at the same time. In fact, most of the
thermal constraints are inactive throughout the computation; therefore, these inactive con-
straints do not contribute to the OPF problem (3-1). Involving inactive thermal limit constraints,
it not only unnecessarily enlarges the problem complexity, but also more importantly makes the
computation hard to converge or even diverge.

To take advantage of this property of the OPF problem, the SuperOPF process of the present
invention first solves an OPF problem without considering thermal limit constraints. The OPF
problem without thermal limit constraints is of the form (3-3). Compared to (2-1), the problem
size of (3-3) is significantly reduced and the OPF computation can converge fast and more ro-
bustly because nonlinear inequality constraints, that is, thermal limit constraints are not in-
volved in the computation.

min f(V,6,t,¢,b,P% Q%)
St PV.6,t,¢,b)+ P —Pf =0,i=1,,np
Q;(V,8,t,¢,b) + QF —QFf =0,i=1,-+,ng
ViSVisV,i=1,,ng
t;<t;<t,i=1,-,ng (3-3)
PSP <pii=1,1np
b: <l71"' = 1’...’n5
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In the SuperOPF solver, the feasible point obtained in stage 1 of feasibility analysis is used as
the initial point for solving the OPF problem (3-3).

3.2.3 Stage 3: OPF with thermal limits

Usually, only few thermal limits are violated (less than 100 out of 20,000 branches) in the OPF
solution without thermal limit constraints that are obtained in stage 2. In stage 3 of the Super-
OPF solver, thermal limit constraints are considered in the OPF problem but are handled in a
homotopy manner. The OPF problem to be solved in this stage is of the form (3-4).

min f(,0,t,¢,b,P% Q%)
s.t. Py(V,0,t,¢,b) +PF—PF =0,i=1,,ng
Qi(V,6,t,¢,b) + Qf —Qf =0,i=1,-,np
S;;(V,0,t,¢,b) < (1 +1S;;,(i,)) € Ly
Sii(V,0,t,¢,b) < (1 +1)S;;,(i,)) € Ly
ViSVisV,i=1,,ng (3-4)
t<t;<t,i=1,,ng
PSP <pii=1,np
b; < b,i=1,,ng

In the OPF problem (3-4), only active thermal constraints are involved. Therefore, compared to
the OPF problem (3-3) without thermal limit constraint, the problem complexity does not in-
crease much. The homotopy parameter 1 is decreased during the homotopy process and if the
thermal relaxation factor is decreased to A=0, the OPF problem (3-4) has been solved. Numerical
studies carried out on large power systems, such as the 13183-bus PJM system, showed that on-
ly two iterations with A1=0.55 and A>=0 are usually sufficient for eliminating all thermal viola-
tions and reach to an optimal solution to the full OPF problem (2-2).

In the SuperOPF solver, the feasible point obtained in stage 2 of the OPF problem without
thermal limit constraints is used as the initial point for the OPF problem (3-4).

3.24 Stage 4: determining values for discrete control variables

There are many control devices, such as tap changing and phase shifting transformers and
switchable shunt capacitors, in the power system that can only take discrete values selected
from a set of allowable values. If the discreteness of these control variables is considered in the
OPF formulation, the OPF problem becomes a mixed-integer nonlinear optimization problem
(NLP) of the form (3-5).
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miny fy)
s.t h(x,y) =0

glx,y) <0
XER"YyeZ™

where, x = (V,0,P%, Q%) is the vector of continuous variables and y = (t, ¢, b) is the vector of
discrete variables.

In the SuperOPF solver, an enhanced sensitivity-based method is developed and used for de-
termining values of discrete control variables. A detailed description of this method is present-
ed in the next section.

3.3 Determining Discrete Control Variables

The incorporation of transformer taps and shunt capacitors into OPF problem gives rise to a
mixed integer nonlinear programming problem (MINLP), also termed as mixed integer AC-
OPF problem (MIOPF). MINOP provides a fairly general and powerful framework to model
optimization problems involving both discrete and continuous variables. In this framework, the
nonlinear expression better approximates real-world phenomena while its discrete variables
offer great flexibility to represent an indivisible quantity or applications involving decision-
making. Although MINLP provides great flexibility and accuracy, the task of solving such prob-
lems is usually challenging. The computational complexity of MIOPF for obtaining rigorous so-
lution tends to increase exponentially with the number of discrete variables. Hence, MIOPF be-
comes intractable for large-scale problems [34]. The traditional integer programming methods
such as branch-and-bound, cutting-plane are non-polynomial and slow for solving large-scale
problems. In fact, it has been shown that a rigorous mixed integer nonlinear programming
method would be orders of magnitude slower than the ordinary nonlinear programming meth-
ods.

Hence, the task of solving MINOP problems is very challenging. Indeed, the diverse nonlinear
behavior in MINOP problems creates great challenging not only in algorithmic developments
but also numerical implementations. From a theoretical viewpoint, it is well known that the ma-
jor difficulty in solving general continuous nonlinear programming problems arises from the
non-convexity of objective functions and/or nonlinear constraints. A large variety of algorithms
have been proposed for solving MINLP problems. Many of these proposed algorithms basically
integrate and extend schemes designed for handling non-convexity arising from nonlinear ex-
pressions and the presence of integral variables. Algorithms of this type reported in the litera-
ture include Branch and Bound [1, 2], Generalized Benders Decomposition [3], Outer Approxi-
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mation [4], Extended Cutting Plane Method [5] and so forth. Details of these proposed algo-
rithms may be found in [6].

Although schemes such as the branching or cutting plane method might alleviate adverse ef-
fects due to the presence of discrete variables, these algorithms are still limited by the non-
convex nature arising from the inherent nonlinear expression. For instance, the Branch and
Bound algorithm creates a sequence of sub-problems from the original MINLP problem and
seeks to identify optimal solutions by solving some sub-problems. Its overall efficiency depends
heavily on whether good solutions could be identified at an early stage to help its pruning
scheme. To identify potential solutions, it will be indispensable to solve some non-convex sub-
problems (even without integral variables). Without the aid of other supplemental techniques,
the performance of stand-alone, deterministic, local-type algorithms is greatly restricted by such
non-convexity. The presence of integral variables further deteriorates the situation since it leads
to an explosive increase in the number of solutions. Developing efficient and robust tools for
solving MINLP problems continue attracting a lot of attentions of many researchers.

At present, a majority of OPF algorithms treat all control variables as continuous variables dur-
ing the initial solution process. Once a solution is found, each discrete variable is moved to its
nearest discrete setting. This scheme gives acceptable solutions provided the step sizes for the
discrete controls are sufficiently small, which is usually the case for transformer taps and phase
shifter angles. However, shunt capacitors and reactors with large tank sizes usually have great-
er impact on the accuracy of this scheme.

Currently, there are two schemes useful after the round-off scheme. One is to execute a conven-
tional power flow solution with all the discrete variables fixed on their steps. The other scheme
is to solve the optimization problem again with respect to the remaining continuous variables
using the previous continuous solution as the initial point. The former scheme is popular be-
cause of its computational efficiency. The latter scheme gives a better solution in the sense of
feasibility and optimality at the cost of increased computational efforts. The final solutions ob-
tained by these two schemes are still not guaranteed to be locally optimal because incorrect val-
ues for the discrete variables may have been selected.

The purpose of this section is to present an enhanced sensitivity-based method for solving MI-
OPF problemes, that is, to determining values for discrete control variables in OPF problems. The
motivation behind this method is that, given the intractability of rigorous methods for MIOPF
problems, approximate solution methods that can produce near locally optimal solutions ap-
pear to be a reasonable alternative. The use of sensitivity analysis for discrete variables is to take
advantage of the continuous approximations of discrete variables for movements away from
their discrete steps. One attractive feature of the sensitivity analysis scheme is that it can merge
well with existing interior point methods for OPF problems. The enhanced sensitivity based
method for determining values of discrete control variables has been implemented in SuperOPF

Page 26 of 135



and has been tested on large-scale power systems. Numerical studies on large power system,
such as the PJM 13183-bus system, indicate that the proposed method is promising in dealing
with discrete variables for practical large-scale systems.

3.3.1 Problem Formulation

Power system contains discrete variables (transformer tap ratios, phase shifts, switchable
shunts). Therefore, an OPF problem can be modeled as a mixed-integer nonlinear programming
problem (MINLP) in the form of (3-5). The general formulation (3-5) of an MINLP contains sev-
eral aspects that are difficult to solve. Features such as nonlinearity in the discrete variables and
non-separability of continuous and discrete variables are included. The Generalized Benders
Decomposition [3] can be implemented to solve the above mixed-integer nonlinear optimization
formulation. In addition, two other algorithms have been proven effective against this problem:
the Outer Approximation algorithm [4] and the Equality Relaxation algorithm. These three al-
gorithms make use of projection, outer approximation and relaxation. The basic idea behind all
three algorithms is to solve an alternating finite sequence of nonlinear programming (NLP) sub-
problems, which provide upper bounds for the optimal solution, and mixed-integer linear pro-
gramming (MILP) master problems, which pro-vide lower bounds for the optimal solution.

A mixed integer OPF problem (MIOPF) has its specific set of discrete variables, namely, trans-
formers and switchable shunt devices. For tap-changing and phase-shifting transformers, the i-
th allowable discrete value for a variable y can be represented as

Yi =X+"ys'l = 0!"'!”’30
where y is the lower bound value, y; is a uniform step size, and n, is the maximum allowable

adjustment steps withy =y +n,, - y; being the upper bound value. For switchable shunts, the

allowable discrete values
¥ € B9}

where {J;, -, )7ny} is the set of allowable configurations of the switchable shunt, which represent

valid combinations of the switchable shunts attached to the same bus.

3.3.2 Determining Discrete Controls

An enhanced sensitivity based method is developed in SuperOPF for determining values of dis-
crete variables. The method comprises three major steps, namely, problem relaxation, sensitivi-
ty analysis, and problem reduction.

Problem relaxation
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The proposed method for solving the MINLP problem (3-5) first relaxes the original problem by
treating all the discrete variables yx as continuous variables. The corresponding relaxed problem
is then described as below nonlinear program:

min flx,v)
s.t. gle,y)=0 i
h(x,y) <0 (3-6)
X €ER",yeR™

This continuous constraint problem (3-6) is then handled by the corresponding solution method,
such as the enhanced homotopy-based interior point method (IPM) solver that has been devel-
oped for SuperOPF. A (local) optimal solution to the optimization problem (3-6) can be obtained
after applying the solution method. This solution is a potential local optimal solution to the
MINORP (3-5), and is denoted as (x*, y*).

Sensitivity analysis

At the local optimal solution (x*, y*) to the relaxed optimization problem (3-6), sensitivity anal-
ysis is per-formed to determine the value of discrete variables. The sensitivity of the change of
the objective function to the change of discrete variables can be evaluated as follows [7,36]:

55 [
Y ady \ay ox
o — oh oh <ag)‘1 dg

¥y ox\ox) oy

ax

(3-7)

where, SJ’: and Sjrepresent the sensitivity of the objective function and inequality constraints

with respect to the discrete variable changes, respectively.

Using the sensitivity computed with (3-7), we can compute a linear estimation of the change in
the objective and the inequality constraints when moving the discrete variable y; from its cur-

rent value yij " to its nearest upper or lower value by the following formulation:

AfF =)ot =y

A =Sl =y]Y
Ah,‘:i = S;,li" . (yiji+1 — yij"), Yk =1,-,n,
Ahj, = S}’,li" . (yij"_1 — yiji), vk=1,-,n,
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where, yij “*1and yij i1 represent the nearest upper and lower discrete values of yij !, respectively;

fi" and f;” are the estimated change in the objective, hj, and hy, are the estimated change in the
i i ki ki

k-th inequality constraint.

To facilitate determining discrete control values, the following merit functions are defined by
combining the variation of the objective and the variation of the constraint violation:

Nh
nf = weAft + Z wpmax[0, by (%, 9) + Ahy ]
k=1 (3-9)

Nhp

ny = weAfi + Z wypmax[0, hy (%X, 9) + Ahy |
k=1

where, wy > 0 and wy,> 0 are weights on the objective and constraints, respectively. These merit
functions are designed to evaluate the influence caused by the movement of yi to its nearest
upper and lower discrete values by combining the variation of the objective and the variation of
the amount of constraint violations. It can be observed from (3-9) that only violated inequality
constraints (after altering the discrete variable) contribute to the merit functions. Obviously, the
lower the value of the merit functions, the better the effect of moving a discrete variable.

Based on these merit functions, it can be determined how to move the discrete variable y; to its
nearest discrete value through the following rules:

Ji Jitl

Yt ey if ni < andnf < ey
Ji

Ji—1 . - + - (3_10)
yiteyt T if ng Snfandng S

In order to provide flexibility for explicitly controlling the progress of the discretization proce-
dure, relative merit function values defined as follows are evaluated:

. Ini| o 7|
=t and S = — 3-11
e T T e G40

It is obvious that these relative merit functions satisfy 0.0 < 7j;, %] < 1.0 and #; + 7§ = 1.0. Ac-
cordingly, for a threshold value 7, (which is always less than or equal to 0.5), the adjustment
rule is updated to the follows:
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It needs to be noticed that for a threshold value #j;;, = 0.5, the method will determine values for
all undetermined discrete variables.

Problem reduction

Given a potential local optimal solution (xx, y*) with values for discrete variables have been de-
termined by the sensitivity analysis, the corresponding reduced MINOP problem can be repre-
sented as follows:

min flx, vy
s.t. glx,y)=0 3-13
h(x,y*) <0 (3-13)

x € R™

The reduced MINLP problem (3-13) can be solved again by the corresponding solution method,
such as the enhanced homotopy-based interior point method (IPM) solver that has been devel-
oped for SuperOPF. Using the solution method, we can obtain a (local) optimal solution to the
problem (3-13). The computed local optimal solution to the optimization problem (3-13) is a lo-
cal optimal solution to the original MINLP problem (3-5).

3.3.3 The solution method

We are now in a position to describe the solution method that has been implemented in Super-
OPF for determining values of discrete control variables. The proposed sensitivity-based meth-
od for determining discrete control variables is presented as follows.

The sensitivity-based method for discretization

Step 0: Solve the relaxed OPF problem with all discrete variables treated as continuous ones.

Step 1: Compute merit function values for all those undetermined discrete variables based
on equations (3-7) through (3-11).
Step 2: For those undetermined discrete variables with merit function value A} < #j, or

i < fen, adjust them to their best discrete values according to the rules defined in (3-11).

Step 3: Re-optimize the OPF problem where those determined discrete variables are fixed at
their discrete values while undetermined discrete variables are treated as continuous
ones.
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Step 4: If all discrete variables have been set to discrete values, stop; otherwise, go to step 1
for the next adjustment iteration.

By implementing the above discretization method in SuperOPF, the user can easily control the
number of iterations (and roughly the closeness to the true optimal MINLP solution) he wants
to be carried out to determine all discrete variables. For example, if the user wants to finish the
discretization in 5 adjustments, he can specify the threshold values to be, for example, 7, =0.1,
0.2, 0.3, 0.4, 0.5 for the five discretization iterations. The threshold value for the last discretiza-
tion iteration is always set to 0.5 to ensure all discrete variables are determined in the final solu-
tion. In this way, the SuperOPF program provides user enough flexibility to balance between
the quality of the discretization and the computational time to be consumed.

3.6 Summary

In summary, SuperOPF solution engine is built on the native nonlinear models for optimal
power flow analysis and it implements a four-stage, multi-level homotopy-enhanced interior
point OPF solver. In this way, it is able to realize the optimal system operating configurations
minimizing operation costs, system vulnerability and environmental impacts. These involved
techniques are incorporated in a smart way in SuperOPF to effectively and reliably solve speci-
fied optimal power flow problems.
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4. Multi-Scenario Co-optimized SuperOPF Program

41 Introduction

Power systems, including their planning and operation, have been undergoing radical changes
in recent years according to the smart grid vision and will keep on undergoing such changes in
the near future. The smart grid initiatives aim to introduce new technologies and services in
power systems to make the electrical power networks more reliable, resilient, efficient, secure
and environment-friendly [1]. The strategy to achieve this vision hinges upon activities that di-
rectly address the technical, business, and institutional challenges to realizing a smarter grid.
Study has shown that the U.S. accounts for 4% of the global population while contributing 25%
of the world’s greenhouse gases [2]. Renewable sources of energy like solar, wind and geother-
mal must be integrated into the power grid in order to reduce the carbon footprint, thus making
the power grid environmentally friendly. Utilities around the world are aiming to reach a base-
line goal of a 25 percent renewable energy mix globally by 2025. In particular, legislation has
been signed that requires California's utilities to obtain 33 percent of their electricity from re-
newable energy sources by the end of 2020 [3]. More specifically for solar energy, the U.S.
passed 10 GW of installed photovoltaic capacity in mid-2013 and utility scale solar power gen-
erated 8.86 million megawatt-hours, or 0.22% of total US electricity in 2013 [4]. Therefore, allow-
ing the seamless integration of as much as possible renewable energy sources, such as wind and
solar energy, into the power grid is one of the most important goals of the smart grid.

However, energy generated from renewable resources such as a wind turbine, solar panel, or
any other source must be promptly consumed because large amounts of electricity cannot be
stored in a cost-effective manner. Therefore, inherent variability of renewable resource can
bring deleterious effects to the power grid operations. For instance, if an electric utility powers
down a coal or natural gas facility in anticipation of wind- or solar-driven energy, those plants
may not be able to power up fast enough should the winds fail to blow or the cloud cover in-
creases. The only option in such a scenario is to buy energy on the spot market, which can be
very costly. In other words, the forecasting error can result in significantly increased operating
costs. To this regard, economic and reliable operation of power systems requires accurate re-
newable resource forecasts. Obviously, the importance and value of accurate renewable re-
source forecasts will increase with the size of the renewable energy generation portfolio. Accu-
rate forecasts can save utilities and their customers millions of dollar each year, and thus can
produce a major return on investment for utilities and helps make solar energy more cost com-
petitive, to achieve the goal of solar electricity being as cheap or cheaper than that produced by
fossil fuels by the year 2020.

Despite its importance, accurate solar forecasting still remains a challenging task. First, it is be-
cause the solar resource availability is complex and exhibits several levels of seasonality. Sec-
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ondly, it is because there are many important factors, especially weather-related ones, which
must be considered in the forecasts. For instance, the daily movements of the sun and short-
term changes in weather conditions both have real, direct impact on a PV system's electric out-
put. Indeed, a lot of research and studies have been carried out at National Renewable Energy
Laboratory (NREL) and a large number of data records have been produced. However, the rela-
tionship between the data records and the solar resource forecast can be very nonlinear. There-
fore, advanced data aggregation techniques and analytical models and systems are required in
order to take full advantage of these data resources. In a word, a successful and economically
feasible integration of a large portion of solar power into the electrical power grid requires accu-
rate solar resource forecasting, as well as reliable quantification of the state-dependent uncer-
tainty associated with the solar power forecast.

The optimal power flow (OPF) is relevant in power system operations, scheduling, and plan-
ning. The main objective of the OPF problem is to determine the optimal steady-state operation
of an electric power system while satisfying technical and economic constraints. With the struc-
tural deregulation of electric power systems and prevalence of power markets, OPF is becoming
a basic tool for planning and operations of the power network.

Existing solvers and programs for OPF computation are mostly focused on achieving an opti-
mal solution to the study objective for a single scenario, namely, the base case system, without
considering any uncertainties that might arise during the planning horizon. In fact, with more
and more penetrations of renewable energy, whose output is stochastic in nature, in the power
networks and requests for regulatory compliance (such as compliance to FERC regulations),
these uncertainties cannot be neglected any longer. It is crucial for the OPF solutions to not only
be economic for the base-case system, but also maintain economic and secure for the whole
planning horizon even if one or more uncertain scenarios (with the largest probabilities) occur.

This motivates the development of the multi-scenario SuperOPF (SuperOPF-MS) solver and
program, to address the need of computing OPF solutions involving uncertain scenarios for
power networks nowadays that are operated in a more and more dynamic environment. This
document details the design and implementation of the SuperOPF-MS program.

4.2  Multi-Scenario Co-optimized OPF

Under the stochastic co-optimization framework of SuperOPF, this stage will develop the sin-
gle-period, stochastic optimal power flow (OPF) solver and program to deal with uncertainties
of the operating conditions which will be expected at the decision-making moment or during
the planning horizon. These uncertainties encountered during the planning horizon can be cat-
egorized into two types. The first type of uncertainties relates to discrete events such as failure
of devices (lines, generators, shunts, etc.), that is, contingencies. The so-call “N-1" criteria, that is,
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there is only one device of the power network fails for a single contingency, will be considered
in the stochastic problem formulation. The other type of uncertainties stems from limited
knowledge about future model parameters, for example, uncertainty in the forecasts of load,
climate, wind or river flow, which are stochastic in nature. Such uncertainties become increas-
ingly non-neglectable because of the increasing penetrations of renewable energy in the power
networks.

In the spirit of SuperOPF, these types of uncertainties will be described as a set of probability
distributions for the uncertain parameters and events and will be materialized as multiple sce-
narios (sets of system states) with associated probabilities. Combination of contingency and sto-
chastic scenarios will result in a tree-like structure of system states with associated probabilities,
where the contingent events provide a set of base scenarios while the stochastic consideration
adds a set of stochastic scenarios to each base scenario. The objective of the OPF computation is
thus a probability-weighted sum of the objectives of the materialized scenarios. The resulting
OPF solver and program will be able to co-optimize these multiple materialized scenarios to
realize the desired stochastic OPF computation, such that an optimal operating plan can be
reached at which the total expected operating objective is optimized (such as the system pro-
duction cost is minimized, or the total expected net benefit is maximized, or the system power
losses are minimized), while all physical and operational limits imposed on the power system
are satisfied (such as, no voltage violations and no thermal violations).

The central task for the SuperOPF-MS solver is to solve the optimal power flow problem that
will result the best expected objective (such as the minimum system total power losses or gen-
eration costs) spanning the planning horizon. Therefore, the co-optimization that needs to be
solved in order to get the desired optimal power flow solution can be modeled as the optimiza-
tion problem (4-1).

It can be seen from the problem model (4-1) that the optimization problem that needs to be
solved is a very complicated nonlinear optimization problem. The problem size (the number of
optimization variables and the number of equality and inequality constraints) will increase line-
arly as the number of internal scenarios increases.

K
min  f(x) = foo) + ) pelfieCu) + o = x0)]
k=1

s.t. ho(x) =10 (4-1)
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4.3  SuperOPF-MS Problem Representations

An overall structure of the SuperOPF solution framework is presented in Figure 4-1. The solver
takes several types of input data, namely, the base case power flow data, the contingency list,
and the renewable energy forecasts. Based on the input data, internal scenarios will be format-
ted in a tree-like structure. For each of these internal scenarios, an internal nonlinear optimiza-
tion (NLP) model is constructed, along with the master optimization model associated with the
co-optimization problem spanning the whole set of scenarios. All these internal optimization
models are then fed to the SuperOPF-MS co-optimization solver for computing the optimal
power flow solution that achieves the best-expected objective value.

Problem Constructor

Pm————————

=0

Input
Scenarios

/

’\-

Internal Models

A tree-like structure

@ Base-case @ Contingent scenario @ Renewable scenario
@ Contingent + renewable scenario

Figure 4-1: Illustration of the SuperOPF-MS procedure

Internal scenarios are categorized into four types, namely, type-1 through type-4 scenarios.
Format of these four types of scenarios are summarized as follows:

e Type-1 base case problem where there is no any contingency in the power network and
not consider renewable energy outputs.

min f(x)
S.t. Pi(x)+PDi_PGi=O 1Sl§n3
Qi(x) +Qp; — Qg =0

S Jrﬁ(x) QG =S ) EL

xmin < x < xmax

Type-1 scenario: (4-2)
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where, ng is the number of buses and L stands for the set of branches.

e Type-2 scenario problems, where there is a single contingency involved in the power
network.

min f(x)
s.t. Pl(x)+PDl_PGl=0 1SlSnB
Type-2 scenario: Qi) + Qi = Qi = 0 (4-3)

S, = \/ps.(x) + Qi) s SP™ (L,j)€eL

xmm S x S xmax

where, L is L excludes contingent branches.

e Type-3 scenario problems, where there includes a single set of forecasts of the renewable
energy generations.

min f(x)
s.t. P;(x)+ Pp; —P;; =0 1<i<ng
Type-3 scenario: Qi) + @i — Q6 =0 (4-4)

Sk = \/Pé-(x) +Qi <spr (L) EL

xmm S x S xmax

where, P, and Q) are equivalent loads with renewable energies.

e Type-4 scenario problems, where the combinatorial occurrence of a contingency and a
renewable forecast is considered.

min f(x)
s.t. P;(x)+ Pp; —P;; =0 1<i<ng
Type-4 scenario: Qi) + @i — Q6 =0 (4-5)

Si= [P+ Qi) <SP (el

xmm S x S xmax

Assuming there are M contingencies in the input contingency list and N renewable forecasts,
then the total number of internal analysis scenarios will be (M+1)*(N+1). The numbering of the
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internal scenario for a session with 3 contingencies and 2 renewable forecasts is illustrated in
Table 4-1.

Table 4-1: Numbering of the internal scenarios

Scenario Index Base case Contingency 1 Contingency 2 Contingency 2

Base case 1 (type 1) 4 (type 2)

Forecast 1 5 (type 3) 6 (type 4) 7 (type 4) 8 (type 4)

Forecast 2 9 (type 3) 10 (type 4) 11 (type 4) 12 (type 4)

44 Solution Methods

Two solution methods are implemented in the SuperOPF-MS solver, namely, the one-short
scheme and the decomposition scheme.

441 One-shot solution schemes

The one-shot scheme is the most direct way to solve the co-optimization problem. Considering
the complexity of the co-optimization problem, a feasible point could be a good initial point. To
this end, the one-shot scheme is implemented as the following steps of propagation of initial
points, as illustrated in Figure 4-2.

Step 1. Solve the type-1 base case problem where there is no any contingency in the power net-
work and not consider renewable energy outputs.

Step 2. Using the solution to the base case problem obtained in step 1 as the initial point, solve
the type-2 and type-3 scenario problems where there considers only single contingency or single
renewable forecast.

Step 3. Using the solutions to the type-3 scenario problems as the initial point, solve the type-4
scenario problems, where the combinatorial occurrence of a contingency and a renewable fore-

cast is considered.

Step 4. Using the solutions to all the type-1 throughout type-4 scenario problems to form the
initial point to the co-optimization problem (4-1).
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Figure 4-2: Illustration of the solution method

442 Decomposition based solution scheme

The one-shot scheme can successfully solve multi-scenario co-optimization problems involving
a small number of scenarios on medium to large-scale power systems. Indeed, complexity of the
co-optimization problem grows very quickly as the number of scenarios increases. Therefore, as
the number of involved scenarios increases, the required computational resources will soon ex-
ceed the available capability. Therefore, a more resource-efficient way is favorable. The decom-
position method is considered in the SuperOPF-MS solver to avoid solving the whole co-
optimization problem directly.

The proposed decomposition method takes advantage of the idea of feasible direction method
and consists of the following steps.

Step 1. Same as in the one-shot scheme, all the subproblems are solved. By combing the solu-
tions to the subproblems, a feasible solution £ to the master co-optimization problem is formed.

Step 2. Compute the feasible direction d that can improve the objective function using the de-

composition scheme. Can be achieved by solving sub-directions dy, k = 1,---, K. This direction
can be computed by solving the following linear program:
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min Vif(®)d

V' ho(%o)
s.t. | d=20
Vi hg (Xk)
V' g0(%0)
...... d<o0
Vigk (k)

(4-6)

It can be observed that contributions from each scenario in this linear program are independent

to each other; in other words, it can be further decomposed into solving following small linear

programs.

min 5ddy
S.t. VTho(fo)d = 0
VT go(%o)d <0

min Skdy
s.t. VThK(JIC\K)d =0
Vigy(Rd <0

(4-7)

Step 3. Compute the step size in the feasible direction that improves the objective function the

most, which is implemented as solving the following 1-dimensional optimization or a line

search problem.

min ,  f&+Ad)
go(Xo+1d) <0

Ix@x +1d) <0

(4-8)

Step 4. Considering the trial point computed in step 3 can be away from the feasible region, a

correction step to restore feasibility is necessary.

The above steps will be carried out repeatedly, until the desired stopping criteria are satisfied.
In this way, it can be avoided to solve the huge co-optimization problem in one-shot. This pri-
mal decomposition scheme is applicable for single-period co-optimization. For multi-period co-
optimization, the dual decomposition scheme should be the option in order to handle the intro-

duced inter-period constraints (e.g. ramping constraints).
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45 The Program Structure

The SuperOPF-MS program has a modularized structure and is designed to be ready for future
extensions. It is flexible and convenient for further development, in order to support more data
formats and to enclose other effective linear and nonlinear solvers into the current implementa-
tion. A block diagram for the structure of SuperOPF-MS program is shown in Figure 4-3. The
program is composed of two major parts, that is, the solver modules and the user interface pro-
grams.

SuperOPF-MS SuperOPF-MS Interface
Console Program GUI Program Modules

L somermeme 0
L L 1T

Data Reader and Parameter Result Processing 1/0
Converter Processor and Reporting Modules
OPF Feasibility | N SuperOPF-MS |A__N Voltage Security Kernel
Analyzer —/ Solver N—V/ Analyzer Modules

Figure 4-3: SuperOPF-MS program structure

451 The SuperOPF-MS Solver Modules

The kernel part is designed to take over all the computationally intensive and architecture inde-
pendent tasks. These tasks mainly include data file reading, parameter settings, result present-
ing and output file writing, and SuperOPF-MS computations. To this end, the solver modules of
the SuperOPF-MS program can be divided into two categories, that is, the data input/output
(I/O) and representation modules and the kernel computing modules.

The data representation modules handle the tasks of data file reading and converting required
by the SuperOPF-MS program, parameter settings for computation, and result presenting.
Therefore, this category consists of components for reading power flow files and other data files.
The most important data file to be processed is the power flow file, where the structure of the
power network under study, parameters of the involved network components, and the initial
state of the power network are specified. There are many data formats used by different ven-
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dors and utilities in the power industry, among which PSS/E, PSLF, PSF, and CIM are the most
popular ones. In the SuperOPF-MS program, different power flow data I/O modules are im-
plemented, each of which is dedicated to one data format. All these data I/O modules are de-
rived from the power flow 1/O base module. External power flow files in different formats are
read and processed by the I/O engine and then converted to an internal, unified power network
representation. In such a way, efforts for future support of other data formats can be minimized.
The data file I/O engine implements the procedure of reading other data files following the
same philosophy of flexibility and extensibility. The other data files need to be processed in the
SuperOPF-MS program include the generation cost model file for minimizing the system gener-
ation cost and the contingency related files for scenarios of OPF with security constraints. An-
other important data file for SuperOPF-MS program is the scenario specification file, which
specifies the list of scenarios to be analyzed by the program. The specification of the scenario file
is detailed in Section 5. Besides the data reader and converter module, the data representation
category also includes a module for handling parameter settings that interprets the user config-
ured parameters and converts them to internal representations that are understandable by the
compute engine. The last module in this category is the module for result data representation,
which is designed to interpret and archive the output files produced by the compute engine.

The kernel computing modules handle the actual multi-scenario optimal power flow computa-
tion and voltage security analysis. All the data collected and processed by the I/O engine is fed
to the compute data module of the compute engine. This data module defines all data structures
for hosting data to be used during the actual optimization process. Necessary transformations
of the data fed from the I/O engine are carried out in this module. Computation parameters are
processed by the parameter setting module. The data and parameters are then fed to the OPF
solver module and the actual OPF computation is executed. The first module of the SuperOPF
core engine is a feasibility analyzer, which is designed to compute a feasible point if the study
model is feasible or to compute a restored feasible point with an optimal constraint relaxation if
the study model is infeasible. The second module, SuperOPF-MS solver, and the third module,
voltage security analyzer, then use computed feasible point as the initial condition to carry out a
combined optimal power flow computation and voltage security analysis, which will produce
in a secure optimal power flow solution.

The SuperOPF-MS program is designed to support different effective solvers, such as the interi-
or point method (IPM) solver and the sequential quadratic programming (SQP) solver. To this
end, the central part of the computation engine is the OPF solver base module (NLP), where the
general nonlinear program modeling and solver calling are implemented. All solver modules
for realizing specific optimization methods or optimizers are derived from this base module.
Furthermore, the SuperOPF kernel part is implemented in C++ language using only standard,
architecture independent libraries. Therefore, the kernel part can easily be ported to other archi-
tectures and operation systems with minimum efforts. The SuperOPF-MS interfaces are devel-
oped in C++ with Microsoft MFC libraries and C#, which provide natively-supported and con-
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venient resources for developing a user-friendly and feature-rich GUI in Microsoft Windows
environments for the SuperOPF-MS program.

4.5.2 SuperOPF-MS User Programs

The user interface part also consists of two components. The first component is a graphical user
interface (GUI) program. This GUI program provides the user a convenient and feature-
enriched interface to interact with the underlying OPF computation.

There are three major functional parts in this GUI program, that is, the data selection and dis-
play part, the parameter and model setting part, and the resulting reporting part. The first part,
that is, the data selection and display part handles the task of selecting required data file paths
for the OPF computation. The usual data files required for an OPF computation include the
power flow file and generation cost file (when the OPF objective is to minimize the system gen-
eration cost). The selected data files will also be displayed by the GUI program in an organized
way and can be easily reviewed or modified by the user. The second part of the GUI program is
for parameter and model settings. Responsive interfaces are designed for the user to set up a
desired OPF computation scenario by specifying the problem model (the optimization objective,
the cost model, etc.) and editing computation parameters (the optimization strategy, the opti-
mizer to use, the detailed optimization parameters, etc.). Therefore, the user has a full control
over the computation to be carried out. The third part handles the result reporting. Taking ad-
vantage of existing reporting engines, namely Microsoft Reports, feature-enriched and mean-
ingful representations of the OPF computation results can be automatically produced and re-
ported to the user.

Besides the GUI program, a SuperOPF-MS console program is also considered in the implemen-
tation. This console program eliminates all graphical interactions and can only be run in a
command line environment. However, the user still has full control over the computation sce-
narios through specifying the parameters to the SuperOPF console command. This results in a
stand-alone, lightweight SuperOPF program suitable for low-end hardware environments.
Moreover, such command-line based execution of the SuperOPF program provides the user a
convenient way to effectively cooperate with other computation and management programs.
For example, the user can include the call of the SuperOPF console program in a script to auto-
mate his/her analysis tasks of sequential execution of multiple programs or the task of analyz-
ing a batch of scenarios.

4.6 Summary

In summary, SuperOPF is a powerful and easy-to-use electric power network analysis tool. It
goes beyond traditional power flow analysis to provide you with the ability to fully optimize
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and refine your transmission system. Cooperating with other power system analysis tools, Su-
perOPF helps realize comprehensive and reliable optimization of your power system under
rapidly changing operating conditions. The major features of SuperOPF can be summarized as
follows:

e Comprehensive and flexible nonlinear modeling capability.

o Reliable and effective large scale power networks (>10,000 buses) optimization.
¢ Genuine locational marginal price (LMP) computation.

¢ Contingency oriented optimization for system security maintenance.

e Exceptional nonlinear convergence with the patented Trust-Tech methodology.
o Constraint feasibility analysis and diagnosis of infeasible scenarios.

e Multiple optimal solutions computation for enhanced flexibility.

e Comprehensive analysis result reporting and database bridging.

e Support of major power system data formats.

e Easy to use program and informative interfaces for smooth user interactions.
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5. Voltage Stability Based Contingency Analysis

5.1 Introduction

Power system operations need to be planned to accommodate various possible contingencies,
such that the power system can still operate securely and economically should any considered
contingency occur within the planning horizon. Contingency analysis involving contingencies
produced following the “N-1” and/or “N-2” rules has become a routine. However, the number
of credible contingencies can be large. For instance, the number of all possible “N-1" contingen-
cies equals to the number of in-service devices in the system, and that of “N-2” contingencies is
almost the square of this number. Such a large number of contingencies make it prohibitive to
carry out the desired analysis if all contingencies need to be considered simultaneously, such as
security-constrained optimal power flow analysis that needs to co-optimize the involved con-
tingencies. Therefore, a preprocessing procedure becomes a necessity for reducing the number
of contingencies to be involved in the actual computation for analysis while still being able to
capture representative patterns of the whole set of contingencies.

One natural option for reducing the number of contingencies is to consider only worst contin-
gencies in terms of security indices in co-optimized OPF computation. To this end, a dedicated
contingency analysis tool is desired for determining the set of “worst contingencies”. In this
study, BSI Voltage Stability Analysis (VSA) program is used to accomplish this task. More spe-
cifically, worst contingencies with smallest load margins (critical contingencies) or even zero
load margins (instable contingencies) are determined by BSI VSA and considered in contingen-
cy-constrained co-optimized OPF computation. In this chapter, BSI VSA program for determin-
ing the worst contingencies in terms of voltage stability indices is introduced.

5.2  Theoretical Part

A power system subject to load disturbances can be modeled as a set of parameter-dependent
nonlinear differential and algebraic equations with parameter variation. Power systems are
normally operated near a stable equilibrium point. When the system load parameters are away
from their bifurcation values and their variations are continuously but slowly, it is very likely
that

o the stable equilibrium point of the underlying power system changes position but re-
mains a stable equilibrium point, and

e the old stable equilibrium point lies inside the stability region of the new stable equilib-
rium point.
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Consequently, the power system dynamics starting from the old stable equilibrium point will
converge to the new stable equilibrium point and will make the system state track its new stable
equilibrium point, whose position is changed continuously but slowly, and yet the system re-
main stable under this load disturbance.

The only typical ways in which a study power system may lose stability, under the influence of
load variations are through the following:

e a stable equilibrium point and another equilibrium point coalesce and disappear in a
saddle-node bifurcation as parameter varies, or

e a stable equilibrium point and another equilibrium point coalesce and disappear in a
limit-induced bifurcation as parameter varies, or

o the stable equilibrium point and an unstable limit cycle coalesce and disappear and an
unstable equilibrium point emerges in a subcritical Hopf bifurcation as parameter varies,

o the stable equilibrium point bifurcates into an unstable equilibrium point surrounded by
a stable limit cycle in a supercritical Hopf bifurcation as parameter varies.

It can be shown that for general power system models, the saddle-node bifurcation is inevitable
if the load of the system increases in the form of constant powers and is avoidable in the form of
constant impedance. The P-V curve and Q-V curve widely used by voltage stability analysis are
examples of saddle-node bifurcations. On the other hand, the Hopf bifurcation may not occur if
the system damping is sufficient. If it occurs, it must occur before the saddle-node bifurcation.

The Continuation Power Flow component of BSI VSA is capable to generate the P-V, Q-V, or P-
Q-V curve and detect the above typical bifurcations along the solution curve. The voltage secu-
rity assessment of BSI VSA was developed on the basis of the following bifurcation-based mod-
el for explaining voltage collapse in power systems due to load variations. Recall that ““slow
load variations" means the dynamics of load variations are relatively slower than the dynamics
occurring in the state vector.

5.2.1 Bifurcation-based voltage collapse model

We next present a model, called the saddle-node voltage collapse model (hereafter called the
SAD voltage collapse model) to address power system behaviors due to slow load variations in
three stages. We note that this model is applicable to analyze the static aspects of power system
behaviors after a contingency (branch outages).

SAD Voltage Collapse Model

Stage 1: the system is in quasi-steady state and is tracking a stable equilibrium point.

Stage 2: the system reaches its ““steady-state" stability limit when the stable equilibrium
point undergoes a saddle-node bifurcation or a limit-induced bifurcation.
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Stage 3: depending on the type of bifurcation encountered in Stage 2, the system dynamics
after bifurcation are captured either by the center manifold trajectory of the saddle-node
bifurcation point or by the unstable manifold of the limit-induced bifurcation point.

We note that Stage 1 is related to the feasibility of “load flow” solutions (i.e., the existence of a
system operating point in a feasible region). Stage 2 determines the steady-state stability limit
based on the bifurcation point. Stage 3 describes the system dynamical behavior after bifurca-
tion to assess whether the system, after bifurcation, remains stable or becomes unstable; and
determines the types of system instability (voltage collapse and/or angle instability). Hence, the
voltage collapse model describes both the static aspect (stages 1 and 2) and the dynamic aspect
(stage 3) of the problem. Furthermore, it can be shown that stages 1 and 2 of the SAD voltage
collapse model encompass many existing voltage collapse models such as the multiple load-
flow solutions model, the load flow feasibility model, the static bifurcation model, the singular
Jacobian model and the system sensitivity model. Stage 3 of the model goes beyond the static
aspect of the problem to describe the dynamic aspect of the problem.

5.2.2 Performance indices for assessing voltage collapse

While continuation power flow methods can generate P-V and Q-V curves in a reliable manner,
they may be too slow for on-line applications. To overcome this difficulty, a number of perfor-
mance indices intended to measure the severity of the voltage collapse problem have been pro-
posed in the literature. They can be divided into two classes: state-space-based approach and
the parameter-space-based approach. The former approach includes the minimum singular
value, the eigenvalue, the condition number of the system Jacobian that all attempting to pro-
vide some measure of how far the system is away from the point at which the system Jacobian
becomes singular. These performance indices can be viewed as providing some measure of the
“distance” between the current operating point and the bifurcation point in the state space of
power system models and hence, they cannot directly answer questions such as: “Can the sys-
tem withstand a 100 MVar increase on bus 11?” or: “Can the system withstand a simultaneous
increase of 70 MW on bus 2 and 50 MVar on bus 6?”

One basic requirement for useful performance indices is their ability to reflect the degree of di-
rect mechanism leading the underlying system toward an undesired state.

In the context of voltage collapse in power systems, a useful performance index must have the
ability to

1. Measure the amount of load increase that the system can tolerate before collapse (when
the underlying mechanism of collapse is due to load variations), or

2. Assess whether the system can sustain a contingency without collapse (when the under-
lying mechanism of collapse is caused by a contingency) and measure the severity of the
contingency.
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The state-space-based performance indices, however, generally do not exhibit any obvious rela-
tion between their value and the amount of the underlying mechanism that the system can tol-
erate before collapse.

In order to provide a direct relationship between its value and the amount of load increases that
the system can withstand before collapse, the performance index for assessing the load margins
before collapse must be developed in the parameter space (i.e., the load/generation space). De-
velopment of performance indices in the parameter space is a relatively new concept that has
been spurred by the local bifurcation theory.

The performance index, implemented in BSI VSA, provides a direct relationship between its
value and the amount of load demand that the system can withstand before a saddle-node volt-
age collapse was developed. This index makes use of the information contained in the power
flow solutions of the particular branch of interest. One feature that distinguishes the perfor-
mance index is its development in the load-demand space and its ability to answer questions
such as: “Can the system withstand a simultaneous increase of 70 MW on bus 2 and 50 MVar on
bus 6?” Moreover, the computation involved in the performance index is relatively inexpensive
in comparison with those required in the existing ones.

We acknowledge that he parameter-space-based performance index implemented in BSI VSA
cannot take into account the physical limitations of typical control devices such as generator
VAR limits and ULTC tap ratio limits; making their computed load/generation margins may
bear some “distance' with the exact margins. Hence, its function is mainly for ranking the severi-
ty of a list of credible contingencies or for ranking the effectiveness of different locations in the
network to install certain control devices. Exact load/generation margins that accounts for all
control devices and their physical limitations can be calculated by the continuation power flow
approach.

5.2.3 On-line voltage monitoring systems

In modern power system control centers, energy management systems are designed, among
other functions, to periodically perform the task of on-line power system (static) security moni-
toring, assessment and control attempting to ensure the ability of the power system to with-
stand credible contingencies (disturbances). Software packages for security monitoring, assess-
ment and control have been implemented in modern energy control centers. These packages
provide comprehensive on-line security analysis and control based almost exclusively on
steady-state analysis, making them only applicable to static security analysis and control.

The strategy of using an effective scheme to screen out a large number of “unharmed” contin-
gencies and to apply detailed simulation programs only to potentially dangerous disturbances
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is well recognized. This strategy has been successfully implemented in on-line SSA. The ability
of screening several hundred contingencies to filter out tens of the critical contingencies has
made the on-line SSA feasible.

This strategy has been applied to BSI VSA. Given a set of credible contingencies, the strategy
would break the task of on-line VSA into three stages of assessments:

Stage 1: perform the task of contingency screening (for voltage collapse) to screen out con-
tingencies that are definitely “safe” from a set of credible contingencies using a sensitivi-
ty-based approach

Stage 2: perform detailed assessment of dynamic performance for each contingency re-
mained in Stage 1 to identify the potential dangerous contingencies using the perfor-
mance index approach

Stage 3: Perform detailed analysis for each contingency identified in Stage 2 using the con-
tinuation power flow approach.

5.2.4 Persistence of local bifurcations under un-modeled dynamics

Many physical systems contain slow and fast dynamics. These slow and fast dynamics are not
easy to model in practice. Even if these dynamics can be modeled properly, the resulting system
model (the original model) is often ill-conditioned. This difficulty has motivated developments
of several model reduction or simplification approaches to derive reduced models from the
original model. One popular model reduction approach (to derive a reduced model) is to ne-
glect both the fast and slow dynamics in an appropriate way. On the other hand, traditional
practice in system modeling has been to use the simplest acceptable model that captures the es-
sence of the phenomenon under study. A common logic used in this practice is that the effect of
a system component or control device can be neglected when the time scale of its response is
very small or very large compared to the time period of interest.

Electric power systems comprise a large number of components interacting with each other in
nonlinear manners. The dynamical response of these components extends over a wide range of
time scales. The difference between the time constants of excitation systems (fast control devices)
and that of governors (slow control devices) is a couple orders of magnitudes. The dynamic be-
havior after a disturbance occurring on a power system involves all the system components to
varying degrees. The degree of involvement from each component determines the appropriate
system model necessary for simulating the dynamic behaviors after the disturbance. For in-
stance, an extended power system dynamical model contain both fast variables, such as the
damping flux in the direct and quadrature axis of generators, and slow variables, such as the
field flux and the mechanical torque of generators. For simulating the dynamic behaviors of a
power system after an event disturbance, the effect of these fast and slow variables can be ne-
glected in the system modeling because the time scale of these variables is very small or very
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large compared to the time period of the disturbance of interest. A reduced system model is
thus obtained from the original system model.

It can be shown that, under fairly general conditions, a power system (with both fast and slow
dynamics) will encounter a saddle-node bifurcation relative to a varying parameter if the asso-
ciated reduced system, derived by neglecting both fast and slow dynamics, encounters a saddle-
node bifurcation relative to the varying parameter. An error bound between the bifurcation
point of the reduced system and that of the original system can be derived. Furthermore, it can
be shown that the system behaviors after the saddle-node bifurcation of the reduced system and
that of the original system are close to each other in state space. These general analytical results
can be applied, among others, to justify the usage of simple power system models for analyzing
voltage collapse in electric power systems.

53 Computational Part
53.1 Computing exact bifurcation points

We consider a comprehensive (static) power system model expressed in the following form
f(x,1) = 0, where 1 is a varying parameter. Let (x*, 1*) be a saddle-node bifurcation point, then
the necessary conditions for an SNBP can be stated as follows:

fx*2%)

[fx(x*,/l*)v] =0 (5-1)
viv—1

where

e f(x*,A%) implies that the point (x*, A*) must satisfy the power flow equations.

o f.(x*,A")v states that the Jacobian evaluated at (x*, 1*) must have a single zero eigenval-
ue

¢ v is the normalized right eigenvector associated with the zero eigenvalue.

These conditions are only necessary and not sufficient, since they do not guarantee that the so-
lution curve is quadratic in a neighborhood of the SNBP. However, if a point satisfies the above
necessary conditions, then by examining the graph of an appropriate state variable versus pa-
rameter, one can still identify whether or not the candidate point is a SNBP. A numerical meth-
od can be applied to directly solve the extended (2n+1)-dimensional nonlinear equations for the
saddle-node bifurcation point. The success of the method depends greatly on a good initial
guess of the desired saddle-node bifurcation point. Without a proper initial guess, the method
may diverge or converge to an undesired saddle-node bifurcation point.
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To overcome the above numerical problem, we use an indirect method to solve for the exact bi-
furcation point. Beside the saddle-node bifurcation point, there is another kind of bifurcation
phenomena called limit-induced bifurcation which is induced by that the status of one con-
straint in power system changed from inactive into active, especially the generator reactive
power limit constraints.

In CPFLOW, a direction indicator describes the sign of the quantity di/ds [85]. When dA/ds
changes sign, it indicates that the continuation process has passed through a BP. If a change of

sign is detected, then we can approximate the zero by the secant iteration scheme.
k _ k-1
s¥—s
k+1 — ok k
st =5 — —q(s 5-2)
EORTEE L

where q(s) = dA/ds and k represents the iteration index.

CPFLOW employs a Newton search in the neighborhood of where the d1/ds sign change to cal-
culate the exact BP (within the specified user tolerance). Once the solution trace passes through
this point, we have information from either side of the BP as follows:

Before BP After BP
A Ay
dA,/ds dA,/ds

where d 4, /ds represents the derivative of 1 with respect to the arc-length s evaluated at the first
solution;. Since the graph of 1 versus s is quadratic in a neighborhood of the SNBP, the New-
ton search will converge quickly to the exact SNBP. The dA/ds values must be computed by the
tangent predictor, so if the secant predictor was being used to trace the curve, then CPFLOW
will temporarily use different types of predictors. Based on the sign and magnitude of di/ds,
CPFLOW determines the proper step length to compute the SNBP. If a computed point is close
to the exact bifurcation point (xzp, Agp) of (x,1) and its dA/ds is smaller than a tolerance, then
we can identify this point as (xzp, Agp), the saddle-node bifurcation point.

If dA/ds is not close to zero but close to two nonzero values respectively, then the computed
point can be a limit-induced Bifurcation Point. At the computed point, one can check the follow-
ing index to make sure that the point is indeed a limit-induced bifurcation point: calculating the
total number; say K; and K, of buses of PV-type of the entire system which it is loaded at point
A1 and point A, respectively. If K; — K, =1, then record the bus ID whose type has been
changed between 4; and 4,. The capability of the generator reactive power at this bus is likely
the key constraint that induces the voltage collapse.

Next, we will show that when d1/ds = 0, the SNBP necessary condition (1) is satisfied. The lin-
ear system with the inflated Jacobian shown below is the tangent predictor computed at step j.
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fe(%j-1,4j-1) fl(x, 14 1)] [dx]] [0 (5-3)

dxj_1

First, notice that the tangent predictor at continuation step j, (dx;, d4;) is right null vector of the
inflated Jacobian. Second, when d4/ds = 0 the last element of the right null vector is equal to
zero. Third, the vector dx; is the right null vector of the original Jacobian and it's nonzero.

Therefore, our indirect method calculates the point that satisfies the three conditions of the exact
SNBP.

5.3.2 Sensitivity formula

Once the exact saddle-nose bifurcation point or limit-induced bifurcation point is obtained, the
sensitivity of the margin to voltage collapse with respect to almost every power system parame-
ter can be obtained for very little additional computational cost. This chapter explains and de-
rives the formula for the sensitivity of a margin with respect to an arbitrary parameter vector.

It is necessary to show that the sensitivity theory is not only for margin to voltage collapse, but
also arbitrary events such as the first low voltage limit or line thermal limit. The formula deriva-
tions for both are basically same. In BSI-VSA, there are two main sensitivity-based functions to

1. fast quantify the effect of varying power system controls or parameters on the proximity
to voltage collapse; and

2. fast rank the severity of contingencies with respect to voltage collapse.

5.3.3 Sensitivity of margin to an arbitrary event
We consider the following static power flow equations:
f(z,Au)=0 (5-4)

where z € R" is system state vector which represents the system state such as bus voltage mag-
nitudes and voltage angles and 1 € R™ is a (controlling) parameter vector which represents the
change in a certain load direction. u is the real control vector. Assume that (zy, 19, up) is a stable
operating point. Let the point (z,, A, u,) be a bifurcation point corresponding the variation of
the A parameter in the direction k. Let k be a unit vector in the norm used to measure the mar-
gin.

k= A — /10)/|/1* - /10| (5'5)

The security margin M to the event is M = |4, — Ay|. Here the event can be the system voltage
collapse or one bus voltage reaches its limit. The equilibrium equations are valid at (z,, 4., u.).
For many limits, including voltage, flow, and power limitations, defining the event equation E
is simple.

Page 51 of 135



Suppose that it is of interest how changing a selected parameter p(€ u) changes the state and
remaining parameters at which the event described by the event equation E occurs. At the event

point characterized by (gg*' ;*' Z%) = 0, we define the map H as
F(z 2,
i = (5o 7 0) 5-6)

The curve (if it exist) that the continuation method estimates is a subset of the set of equilibria
that satisfy the event conditions in state and parameter space around the nominal boundary
point. This set of equilibria, the pre-image of the zero set of H, is denoted H~1(0). Using calculus
on H~1(0) is defensible only when H~1(0) is a differentiable manifold. It turns out that for very
general conditions this will indeed be true and we are justified in the assumption that there are
curves on H~1(0) that describe the sets of interest to us. The conditions are

1. H,|, 2, has rank n.
2. (H, HAIE)l(Z*,,l*) has rank n + 1.

Condition 2 is a transversality condition stating that a vector through (z,,1,) in the k direction
intersects H™1(0) transversally. Condition 1 can be interpreted as a condition of uniqueness.
Simply stated, Condition 1 specifies that only one event occurs at a time. Assume that H~1(0) is
a smooth manifold and a smooth curve on that manifold parameterized by p is (Z(p), A(p)) so

that (Z(po), A(po)) = (2.,4.) and

F(Z(p), A0), p)\ _ i
(b2t A i) = -7)

Since the system is assumed stable at the nominal operational point, £ is nonsingular as p is
varied in a neighborhood about p,. Then as p is adjusted each new equilibrium (Z (p), Ao, p), sat-
isfying F(Z (p),)xo,p) = 0, can be associated with one corresponding point (Z(p), A(p),p) satis-
fying H(Z(p), A(p), p)=0 that is the closest point on H=1(0) in the direction k. The difference in
parameter space between the operating point (Z(p),Ay,p) and the corresponding boundary
point (Z(p), A(p),p) is

A®) = Ao = Lk (5-8)
where L(P) is a scalar step in the k direction as a function of p. The margin as a function of p is
M(p) = Ao = [L()k + Ao — Ao| = |L(D)E]| (5-9)

Since k is a unit vector in the norm used for the margin, the margin as a function of p is
M(p) = L(p). Write A(p) in terms of the margin L(p)

A(p) = A0 + L(p)k (5-10)

Equation (5-7) can then be written
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<F(Z(P); Ao + LDk, P))
E(Z(p), A + L(P)k,p)

Differentiating (5-11) at (z,,4.) with respect to p and applying the chain rule for derivatives

i [l
E, Ek . Ly, Ey

=0 (5-11)

yields a linear system

(5-12)

*

The matrix F F’llf
E, EFk

the sensitivity of the security margin with respect to p. The first order estimate of the change in

is nonsingular by condition 2. Solution of equation (5-12) then yields L,,

margin corresponding to the change in p of Ap is
AL = L,Ap (5-13)

Solution of (5-12) additionally yields Z,,, the tangent vector at (z.,1.,py) to the curve in state
space that describes how the state variables change to satisfy the equilibrium and event condi-
tions as p varies. Thus, Z,Ap is the first order Taylor series estimate of how the state changes on
H~1(0) for a parameter change of Ap.

. . (E, Fk\|. .
Since the matrix ( z A A> is the same for any parameter p, once the matrix is factored and the

E, Ej
sensitivities obtained for one parameter, computing the sensitivities for any additional parame-

*

B

E

)| and one forward and backward substitution.
p

ters only requires obtaining the derivatives (

If obtaining L,, for many parameters is of primary interest, and there is no desire to obtain Z,,
then full solution of the linear system (5-12) is not necessary. Since any set of n + 1 vectors in R™
are linearly dependent there is a non-zero vector w such that

“(z)

F,
wis a vector orthogonal to the range of( z )

E,
E;
when ( Ez)

=0 (5-14)

*

and w is unique up to a scalar multiplication

*

is full rank, which is guaranteed by condition 1. Pre-multiplying (5-12) by w yields

k E
w F)‘If Lp = —w( p)
Exk /|, E,

*

(5-15)

*
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is nonsingular, so (5-15) can be solved to obtain the sen-

Fk\| . . E, Fk
w ~ 1S not zero since ~
Exk /|, . Ep

sitivity with respect to p of the margin to the event.
E
*(g))
Ep
b= TER
w( A2
(E,lk>

*

(5-16)

Note that regardless of the number of parameter under consideration, w needs to be computed
only once.

The sensitivity of the security margin to changes in many parameters is effectively just an in-
dexing operation once the scaled normal vector is obtained. The normal vector to the event
boundary in parameter space defines to first order the proportions by which all the parameters
must vary to keep the equilibrium at the security boundary. The normal vector is useful in de-
termining the relative effectiveness of different parameters on the security margin. Note that if a
point on the security boundary is obtained using a direct method that uses the E equations as
corrector equations, obtaining the normal vector requires only one additional forward and
backward substitution using the previously factored Jacobian matrix.

5.3.4 Sensitivity of margin to a Saddle-node bifurcation point

Suppose that we are concerned with locating the points at which the system equations F be-
come singular, at points just like voltage collapse phenomena.

Suppose that the equilibria of the power system satisfy the equations
fGx,A,p) =0 (5-17)

At a saddle node bifurcation, the Jacobian matrix f, is singular. For each (x, A, p) corresponding
to a bifurcation, there is a left eigenvector w(x, 4, p) (a row vector) corresponding to the zero ei-
genvalue of f, such that

W(x, ﬂ., p)fx (X', A, p) =0 (5-18)

The points (x, 4, p) satisfying (4-17) and (4-18) correspond to bifurcation and a curve of such
points can be obtained by varying p about its nominal value p,. Linearization of this curve
about the bifurcation (x.,, 4., p.) yields

felbx + fo1.02+ fo]| Ap =0 (5-19)

where f) is the derivative of f with respect to the load powers 4 and f,, is the derivative of f

4

with respect to the parameter p. “|.” means “evaluated at (x,,A.,p.)”. Pre-multiplication by

w = w(x,, A, p.) yields
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wfil.A1 + wfp|*Ap =0 (5-20)
since (5-18) implies that wf;|. = 0. Equation (5-20) can be interpreted as stating that
Wfilwwfpl.) is the normal vector at (4,,p.) to the bifurcation set in a load-power parameter
space.

Using the parameterization of A by L from (4-5) yields A1 = kAL and it follows
wfikAL + wf,Ap = 0 (5-21)

The sensitivity of load margin to the change in parameter is

i [— L — (5-22)
: _Wfll*k

For the linear estimate we use (4-22) and
AL = Ly| Ap (5-23)

The linear estimate holds for multiple parameters p, in which case wf,|. is a vector.

5.3.5 Sensitivity-based branch outage contingency analysis

Contingencies such as unexpected line outages can lead to voltage collapse blackouts. These
contingencies generally reduce or even eliminate the load margin to collapse. It is hence desira-
ble to estimate the effect of contingencies on voltage stability margin. The line outage can be
modeled by changing the admittance of the underlying line. The loading margin can then be
recomputed. However, re-computing the loading margin can be avoided: if the loading margin
can be viewed as a smooth function of the line admittance, then the sensitivity of the loading
margin with respect to changes in the admittance can be calculated and used to estimate the
change in the loading margin due to the line outage.

For each single non-radial line outage the parameter p is a vector with only three components -
one each for conductance, susceptance, and shunt capacitance of the outage line. The first step
in the computation is to obtain the projected direction of load increase from the short-term load

forecast. For 4y, the current vector of load parameters and A,, the forecasted short term load, the
11_10

7] defines a unit vector in the direction of load increase.
1—0

vector k =

The second step is to compute the corresponding SNBP or LIBP by CPFLOW. During the con-
tinuation, the system equations will change due to the occurrence of limits such as reactive
power limits. The third step is to compute the various quantities at the bifurcation point and
then, for each contingency, evaluate the sensitivity formulas.
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Let Ap be the negative of the admittance vector for the outage branches. The linear estimate for
the resulting change in margin is:
wEk,Ap

AL = LyAp = ——"— (5-24)
A

The denominator of (4-24) is a scaling factor that is the same for all contingencies. The numera-
tor of (4-24) contains the vector F,Ap which, since p appears linearly in F, is just the terms in F
that contain p. For F representing real and reactive power balance, F,Ap is the vector of the pre-
contingency real and reactive power injections on the outage branch. The linear formula is
simply the power injections from the outage lines scaled by the normalized left eigenvector W =

tor W = —w/wF;k:
AL = WPiP; + W Q; + W'iP + w9 Q; (5-25)

where P and Q are the pre-contingency real and reactive power injections to the outaged line, i
and j indicate the buses connected by the outage line, and Wi represents the scaled left eigen-
vector component corresponding to real power balance at bus i. Formula (5-25) implies that
lines with small flows are guaranteed to have small linear estimates.

Radial line outages that isolate a portion of the network are a special case in which the power
balance equations of the isolated bus should be deleted from F. Thus, for a radial line outage Fp
has only 2 nonzero rows corresponding to power balance at the connected bus.

5.3.6 The enhanced look-ahead contingency ranking technique

To improve the speed and accuracy of estimating load margins, we develop a sensitivity-based
scheme to determine the ‘location” on the power flow solution curve for computing the second
power flow solution. We also develop a reselection scheme to select two power flow solutions
for curve fitting of the power flow solution curve passing through the nose point. These two
schemes are described in the following.

Sensitivity-based scheme

Whereas the sensitivity-based method is very fast, the load margin estimation results obtained
by this method are usually inaccurate. In addition, the method cannot identify insecure contin-
gencies that lead to voltage collapse. We propose to use the load margin estimated by this fast
method as a guideline to compute the second power flow solution. We next briefly describe the
sensitivity-based method.

For a single branch-outage contingency i, the change of load margin relative to the base-case
load margin can be linearly approximated as follows:
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dM—aM +6Mb +0M 5-26

i—agigi abii aCiCi (5-26)
where, g;, b; and c; are the conductance, susceptance and shunt capacitance of branch respec-
tively. M /dg;, OM /db; and OM /dc; are the sensitivities of load margin with respect to conduct-

ance, susceptance, and shunt capacitance of branch i at the nose point of base-case. Hence,
Mi =M — dMl (5-27)

where M is the load margin of the base-case and M; is the estimated load margin for single
branch contingency i. A multiple-branch-outage can be similarly treated and super-imposed.

For a generator outage j, the change of load margin can be approximated as:

amy =2 p 4 M
Topy; 9 0Qy,

Qg.j (5-28)

where P, ; and Qg ; are the real power and reactive power of generator respectively. dM /0P, ;
and dM/3Q, ; are the sensitivities of load margin with respect to generator real power and reac-
tive power respectively. Hence, the estimated load margin can be linearly approximated as fol-
lows:

A multiple-generator-outage can be similarly treated and super-imposed. Since the load margin
calculation is a nonlinear problem, the above sensitivity-based method cannot yield accurate
results. However, due to its fast speed, we propose to apply the sensitivity-based method to ob-
tain a suitable step-size described below for computing the second solution

Astep,k = /1Mk (5-30)

where 4y, is the parameter value corresponding to the load margin M obtained by the sensitiv-
ity-based method. We then apply the CPFLOW to compute the second power flow solution
with the step-size described in (5-30).

To compensate the possible inaccuracy in the step-size selection scheme (4-30), we develop an
automatic step-size shrinking scheme incorporated into continuation power flow for new step
length selection. When CPFLOW fails to compute the second power flow solution, the following
scheme applies: run CPFLOW with a new step-size, which equals 80 percent of the current step-
size; repeat this step-size selection, if necessary, for a few iterations.

Reselection scheme

The estimated load margin by the look-ahead method is likely to be inaccurate if the computed
power flow solution is still far away from the corresponding saddle-node bifurcation point. It
then calls for computing another power flow solution closer to the saddle-node bifurcation
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point. We use the following criterion to check whether the computed power flow solution can
be used to estimate the load margin.

A — 4y
Az

<k (5-31)

where, 4, is the load margin estimated by the look-ahead function method, 1, is the parameter
value associated with the second power flow solution, k is a pre-defined value; say 0.15. When
this criterion is satisfied, it implies that the second power flow solution is close to the bifurca-
tion point and the estimated load margin is accurate and yet conservative. The conservative
property, a desired property, is a by-product during the procedure of power flow computation.

If the criterion (5-31) is not satisfied (i.e. the computed power flow solution is far away from the
bifurcation point), then another power flow solution closer to the bifurcation point than the cur-
rent one is needed. Under this situation, we set this second solution as the first solution point
and use the following step size to compute next power flow solution:

Astep =a(dp — 43) (5-32)
where, a is step size factor. It is set to 0.5 in this paper. This step size definitely is smaller than

Ay — Ay

When this scheme is used, it needs to compute three or more power flow solutions. However, it
is worthy to spend a little more time to obtain more accurate results. Fortunately, our numerical
experiences indicate that only a few contingencies in a contingency list need this scheme.

Step by step description of the method

A step-by-step description of the enhanced method is given below:

Step 1: For a load/ generation variation direction, apply CPFLOW to compute the exact bifurca-
tion point of base case.

Step 2: For a credible contingency set, apply the sensitivity-based scheme to compute a suitable
step length for each contingency.

Step 3: For each contingency, say, contingency i, compute the estimated A,; via the following
seven steps.

Step 3.1: Compute the power flow solution of post-contingency system. If a power flow so-
lution is found, set this solution x, the first point and go to step 3.2; if the power flow di-
verges, this contingency is insecure and set A, ; = 0.

Step 3.2: Compute the second power flow solution x, by CPFLOW using the step length ob-
tained at step 2.
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Step 3.3: If the power flow solution cannot be found, then compute the second point by us-
ing the automatic step length shrinking technique until a solution is obtained.

Step 3.4: Use the curve fitting technique to estimate the load margin Ay ; for this contingency.

Step 3.5: Check whether the estimated load margin Ay ; is satisfied with criterion (5-31). If the
criterion is satisfied; then go to Step 3.1; otherwise, check whether the second power
flow solution obtained is via the step-size shrinking technique (not via the sensitivity-
based scheme). If it is, then a limit-induced bifurcation point is detected and this point is
far away from the nose point and go to Step 3.6; otherwise, go to Step 3.7.

Step 3.6: Reset the estimated load margin by using the load margin to the second power
flow solution as the estimated load margin A ; for this contingency and go to Step 3.1.

Step 3.7: Set this second point as the first point and compute a new second point by using
the step-length obtained by (5-32) and go to step 3.3.

Step 4: Rank the contingency list based on the estimated load margin 4, ;.

Remarks

For a contingency with an associated limit-induced bifurcation point, the above enhanced
method estimates the load margin in the following way: if the limit-induced bifurcation point is
close to the nose point (i.e. criterion (5-31) is satisfied), then the estimated load margin is set to
be the estimated load margin to the nose point; otherwise, we use Step 3.5 and Step 3.6 to esti-
mate its load margin.

54 Indices for On-line VSA

A number of performance indices intended to measure the severity of the (static) voltage stabil-
ity problem have been proposed in literature. These indices intend to provide some measure of
how far the system is away from the point at which the system Jacobian becomes singular.
Among them, the following indices receive considerable attention of different degree:

¢ Minimum singular value

e Voltage drops

e Real and/or reactive power losses

¢ Condition number of the system Jacobian

e Angular distance between the current stable equilibrium point and the closest unstable
equilibrium point in a Euclidean sense.

e Energy distance between the current stable equilibrium point and the closest unstable
equilibrium point using an energy function.
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These performance indices can be viewed as providing some measure relative to the distance
between the current operating point and the bifurcation point. These performance indices, how-
ever, are defined in the state space of power system models instead of in the parameter space.
Thus, these performance indices cannot directly answer questions such as: "Can the system
withstand a 100 MVAR increase on bus 11?" or: "Can the system withstand a simultaneous in-
crease of 70 MW on bus 2 and 50 MVARs on bus 6?"

In order to provide a direct relationship between its value and the amount of load increases that
the system can withstand before instability, the performance index must be developed in the
parameter space (i.e. the space of load demands) rather than the state space where the existing
performance indices were developed. A look-ahead performance index intended for on-line ap-
plication was proposed and evaluated in [86,87]. Given (i) the current operating condition (ob-
tained from the state estimator and the topological analyzer), (ii) the near-term load demand at
each bus (obtained from predictive data, and short-term load forecaster), (iii) the real power
dispatch (say, based on economic dispatch), this index provides a load margin measure (MW
and/or MVAR) to assess the system's ability to withstand both forecasted load demands and
real power variations. However, like all the existing performance indices developed so far, the
look-ahead performance index also does not take into account considerations of physical con-
straints on OLTC and generator VAR limits. The look-ahead performance index is used for con-
tingency ranking.

5.5 Contingency Analysis on Voltage Stability

On-line voltage stability analysis includes contingency screening, ranking and detailed analysis
and provides a list of the insecure contingencies, critical contingencies and secure contingencies
in terms of voltage stability margins, from a full, comprehensive contingency list. The load
margin calculation determines the voltage stability margin in megawatts (MW) and megavar
(MVAR), between the voltage collapse point (or the thermal limit violation point) and the cur-
rent power system operation point. The VSA&E package also provides the operators as well as
reliability engineers look-ahead analysis, enhancement control (for critical contingencies) and
preventive control (against insecure contingencies) along with the load margin and sensitivity
information with respect to voltage collapse, voltage violation and thermal limit violation.

For practical applications, a contingency is composed of a single or multiple items. Line, trans-
former, shunt, load and generator outages are considered in the contingency. A contingency

can be a combination of line outages, generator outages, shunt capacitor outage, or load outages.

An insecure contingency is a contingency whose corresponding load margin to voltage collapse is
negative or zero. The base-case power system will suffer from a voltage collapse should an inse-
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cure contingency occur. A critical contingency is a contingency whose corresponding load mar-
gin to voltage collapse is positive but small. The base-case power system will be close to the
verge of a voltage collapse should a critical contingency occur. Given a list of credible contin-
gencies, it is imperative to identify the insecure contingencies and the critical contingencies.

Given a set of credible contingencies, the contingency screening strategy would break the task
of on-line VSA into three stages of assessments:

1. Screening stage: perform the task of contingency screening to screen out contingencies
which are definitely voltage stable from a set of credible contingencies

2. Ranking stage: perform the task of contingency ranking in terms of load margin for each
contingency remaining in Stage 1.

3. Detailed Analysis stage: perform detailed analysis via computation of P-V, Q-V and P-
Q-V curves for the top-ranked contingencies

There are three major components in the architecture of the online VSA: a contingency screen-
ing program, a contingency ranking program and a fast and reliable continuation power flow
simulation program. A new cycle of VSA is initiated based on the present state, network topol-
ogy and the predictive data of the power system. When a new cycle of VSA is warranted, a list
of credible contingencies, along with information from the state estimator and topological anal-
ysis, are applied to the contingency screening program whose basic function is to screen out
contingencies that are definitely stable. Contingencies that are classified to be definitely stable
are eliminated from further analysis.

It is the ability to perform contingency screening on a large number of contingencies and filter
out a smaller number of contingencies requiring further analysis that would make on-line VSA
feasible. Contingencies which are either undecided or identified as unstable are then sent to the
ranking function program whose basic function is to select from the undecided contingencies
those critical contingencies for detailed analysis using the continuation power flow method.

It is important to accurately identify the top most severe contingencies that include insecure
contingencies from a list of credible contingencies. To this end, we propose the following three-
stage approach [89]

1. Perform contingency screening to the contingency list using a linear, sensitivity based
method.

2. Perform contingency ranking to the contingencies screened out at Stage 1 using an en-
hanced look ahead load margin quadratic approximation method.

3. Perform detailed analysis to the top-ranked contingencies at Stage 2 using the Continua-
tion Power Flow Method.
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It is interesting to note that a linear method is used in stage 1 for speedy analysis, a quadratic
estimation method is used in stage 2 for more accurate estimation of load margin with a modest
speed while a comprehensive nonlinear method is used in stage 3 for accurate and detailed
analysis of top-ranked contingencies.

5.6 Characterization of Nose Points

It is well known that the nose point can be a saddle-node bifurcation point [76,77,83-85]. It is
less known that the nose point can be a peculiar bifurcation point, structure-induced bifurcation
point [80-82]. Structure-induced bifurcation (also termed Q-induced bifurcation) manifests itself
as a sudden disappearance of stable equilibrium point as one or more parameters are varied
and the underlying vector field is altered. Indeed, traditional local bifurcations are usually
caused by the (independent) parameter variations of a vector field while Q-induced bifurcations
are caused by the parameter variations of a parameter-dependent vector field; resulting in the
changes of the vector field. The structure-induced bifurcation has been studied and illustrated
on a 3-bus power system in [80]. Further insights of structure-induced bifurcation in power sys-
tems on both small and large systems such as a 5200-dimensional system can be found in [82].

QQ-induced bifurcation is different from traditional bifurcations such as saddle-node bifurcations
and Hopf bifurcations. One common feature of these traditional bifurcations is that one of the
system eigenvalues crosses the imaginary axis as parameters vary. On the other hand, Q-
induced bifurcation in power systems occurs while the real parts of all of its corresponding ei-
genvalues remain negative. Physically speaking, a structure-induced bifurcation in power sys-
tem occurs due to load increases (parameter variation); causing one or more generators reach
their reactive power (also termed Q) limits which in turns changes the underlying power flow
equations (i.e. the vector field is altered).

The mathematical mechanism behind the transition is the switching of the system model from
one set of power flow equations into another set of power flow equations and is characterized
by the following:

e the stable equilibrium point suddenly disappears.
¢ anew unstable equilibrium point emerges when the parameter decreases.
¢ anew unstable equilibrium point emerges when the parameter increases.

e there is no other stable equilibrium point (of the corresponding new system) beyond the
structure-induced bifurcation value.
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L J

Figure 5-1: The case that system loses its stability when reactive power of generator reaches its
limit (the bus type is changed from PV to PQ), structure-induced bifurcation causes voltage col-
lapse immediately

L J

Figure 5-2: The case that system remain its stability when reactive power limit of generator is
encountered (the bus type is changed from PV to PQ), load can be increased until saddle node
bifurcation (SNB) causes voltage collapse

The corresponding bifurcation diagram is shown in Figure 5-1 in which the stable equilibrium
point disappears beyond the structure-induced bifurcation value and a new unstable equilibri-
um point emerges. Furthermore, the new unstable equilibrium point is of type-one. Hence,
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there is no near-by stable equilibrium point after the bifurcation. The consequence of structure-
induced bifurcation is an immediate instability induced by generator reactive power limits. The
dynamic consequence of Q-induced bifurcation is dangerous since, beyond the structure-
induced bifurcation value, there is no stable equilibrium point nearby. This dynamic conse-
quence is quite similar to the dynamic consequence of saddle-node bifurcation point.

A structure-induced exchange process occurs in which the stable equilibrium point suddenly
jumps into another stable equilibrium point when the structure-induced exchange value is
crossed. The dimension of new SEP is different from that of the old SEP. The corresponding “bi-
furcation” diagram is shown in Figure 5-2. We note that the structure-induced exchange process
is not a bifurcation.

Another fundamental difference between the structure-induced bifurcations and the traditional
bifurcation is that the number of system equations before the structure-induced bifurcation and
that after the bifurcation is different by one while the dimension before and the dimension after
the traditional local bifurcation are the same. In this regard, SIB is similar to the new type of bi-
furcation of non-smooth dynamical systems; the so-called border collision bifurcation has been
discovered in recent years. Border collision bifurcation involves some kind of switching action
that makes the system toggle between two or more different types of dynamic behavior. In gen-
eral, a border collision bifurcation occurs when a fixed point collides with the borderline be-
tween two smooth regions in the discrete state space, resulting in an abrupt change in the sys-
tem behavior. The system usually jumps into another stable operating orbit after border colli-
sion.

Physically speaking, SNB is related to transmission limitation while SIB is related to reactive
power deficiencies. Hence, the following two different types of bifurcation points and their cor-
responding load margins and sensitivities are computed.

e Saddle node bifurcation point (SNB nose point)
e Structure-induced bifurcation point (SIB nose point).

The exact computation of SNB is based on the simplified set of characteristic equations derived
in [78,79] while the exact computation of SIB is based on the set of characteristic equations de-
rived in [82]. In addition, the voltage violation points and the thermal limit violation points and
sensitivity calculations at these points (violation points, bifurcation point or limit point) are
needed as they provide a variety of valuable information to operators.
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6. A Renewable-Energy-Integrated Analysis Platform

6.1 Introduction

The drive for cleaner sources of energy has led to the proliferation of renewable energy sources,
such as wind and solar energy, in today’s power systems. However, most of these renewable
energy sources are inherently stochastic and as a result introduce more uncertainty into the
power system. Forecasters, which are constructed based on different disciplines, are used by
power utilities to predict most probable renewable energy outputs in the planning horizon.
These forecasters are never perfect due to the inherent variability of the renewable energy. On
the other hand, power system operations need to be planned to accommodate various possible
scenarios, such that the power system can still operate securely and economically should any
considered scenario occur within the planning horizon. Therefore, power system computation
and analysis, such as voltage stability analysis (VSA), dynamic stability analysis (DSA) and op-
timal power flow (OPF) computation, involving probabilistic scenarios become more and more
common because of the increasing penetration of renewable energies into the power grid.

However, the number of renewable energy scenarios credible for computation and analysis can
be large. These renewable scenarios follow some proper probabilistic distribution function of
the energy output of the renewable source under study; therefore, there could be a countless
number of possible renewable scenarios in theory. In practice, renewable scenarios are generat-
ed through probabilistic distribution sampling techniques, but the number of scenarios can still
be large. Such a large number of scenarios make it prohibitive to carry out the desired computa-
tion and analysis for the power system if all scenarios need to be processed concurrently. There-
fore, a preprocessing procedure for reducing the number of scenarios to be involved in the ac-
tual computation for analysis becomes a necessity.

We have developed a renewable-energy-integrated computation and analysis platform for
power utilities to effectively deal with increasing penetrations of renewable energy. A high-
level structure of our solution is illustrated in Figure 6-1. The system consists of two major parts,
that is, BSI renewable scenario program and our power system computation and analysis tools.
The renewable scenario program is composed of three modules, which are

e Module I - Error distribution function: this module models the error distribution of the
renewable energy forecasts, based on historical records of the forecasted and real out-
puts of the renewable energy.

e Module II - Scenario generation: this module generates a large list of renewable scenari-
os through sampling the associated distribution function.

e Module III - Scenario reduction: this module reduces the list of renewable scenarios to a
reasonable size, while still capturing representative patterns of the whole set of scenarios.
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Figure 6-1: The renewable-energy-integrated analysis platform

Contingency List

Along with the system network model and a contingency list, the resulting concise set of re-

newable scenarios are ready to be used for routine power system computation and contingency

analysis. Since the inception 20 years ago, we have developed a portfolio of advanced power

system computation and contingency analysis tools. Part of the portfolio includes:

e VSA&E: the program to evaluate voltage security of the system based on real-time sys-

tem operating conditions.

e TEPCO-BCU: the program to perform on-line exact transient stability assessment and

available transfer capability evaluation.

e SuperOPF: the program to perform AC OPF analysis with comprehensive modeling ca-

pability and reliable and high-quality solutions.

Empowered by our proprietary methodology of screening, ranking and detailed analysis, our

solution provides a portfolio of viable tools for comprehensive analysis and assessment of pow-

er systems with high penetration of renewable energy. The three modules of the proposed re-

newable scenario program are detailed in the following sections of this document.
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6.2 Module I: Error Distribution Function

There are two major sources of uncertainty in renewable energy, of which one is introduced by
the forecast error and the other is introduced by the unplanned outages of the renewable power
units. The first source of uncertainty is related to the impossibility of producing a perfect re-
newable energy forecast. Different methods to estimate the uncertainty of deterministic (i.e.
point) forecasts have been developed. The uncertainty of the deterministic forecast can be rep-
resented by different approaches. For wind power, the most common one is a nonparametric
probabilistic forecast represented by quantities, intervals or probability density functions; the
other two representations are the risk indices of the forecasts, and scenarios incorporating tem-
poral or spatial interdependence structures of prediction errors. For solar energy, the uncertain-
ty introduced by the irradiation forecast error could also be represented by different approaches
including probability density functions, standard deviation models or auto-regression models.

In the proposed renewable energy platform, the probability density function approach is im-
plemented. To this end, we have developed a dedicated module for modeling the distribution
functions of renewable forecast errors. The structure of this module is illustrated in Figure 6-2.

Module I: Forecast Error Distribution Function

Renewable Energy

Forecast T Data Forecast Error Distribution Distribution R Forecast
. . > Parameter > Error
Renewable Energy | 47 Aggregator Computation MiteelE) SElEEdem Estimation Distribution
Real Output %
istorical
Database

Figure 6-2: The renewable forecast error distribution function module

This module aggregates both real and forecasted outputs for the renewable source and stores
them in a historical database. The forecast error, that is, the difference between the synchro-
nized forecasted outputs and the real outputs, is computed throughout the historical horizon.
Based on the aggregated renewable forecast error data, a proper distribution model will be se-
lected and parameters of the model will be computed, which combined specify the resulting
forecast error distribution.

Each renewable node (a substation) in the power grid will be assigned a unique error different
distribution function, according to following facts:

¢ The type of renewable source.

e The forecaster employed for predicting renewable energy.
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e The geographical location of the node.

It needs to be noted that the distribution of error or forecast output is a conditional probability
function with respect to the forecast value. Therefore, for different ranges of forecast values, dif-
ferent set of model parameters will also be determined.

We have implemented a set of popular distribution function models in this module. These func-
tions, including their probability distribution function (PDF), cumulative distribution function

(CDF), and model parameters, are summarized in Table 6-1.

Table 6-1: Supported probability distribution functions

Distribution PDF [@D)3 Parameters
1 _(x—uz)2 B 1 X —U
Normal f(x)=ame 20 F(x)—2(1+erf<aﬁ)> wo
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6.3 Module II: Scenario Generation

The computed error distribution function in module I is used for scenario generation. The struc-
ture of the module for scenario generation is provided in Figure 6-3. For each renewable energy
unit, its error distribution functions and the expected or forecasted power injection (i.e., the re-
newable generation) into the power network are provided. Based on the error distribution func-
tions and the expected or forecasted value of renewable generation, the probability distribution
function of the renewable power injection into the power network at the node can be computed.
More specifically, the nodal renewable power injection distribution function is

g(x) = f(x = po), (6-1)

where, p, is the expected or forecasted value of the power injection. It needs to be reiterated that
though the model of the distribution function is fixed for the node, parameters of the distribu-
tion function are dependent on the value of p,.
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Figure 6-3: The scenario generation module

Power injection distribution functions for all renewable energy nodes in the network are aggre-
gated and stored in the database. Based on the aggregated data, a joint probability distribution
function is determined for the system renewable power injections. Since the distribution func-
tion is a continuous real-valued function, it is not plausible to use the distribution function di-
rectly in the follow-up computation and analysis. Therefore, a sampling process is necessary,
such that discrete scenarios obeying the distribution can be produced.

Sampling the distribution function to generate renewable scenarios can be realized through dif-
ferent methods. The basic method naively utilizes conventional distribution sampling tech-
niques, such as

e Monte Carlo (MC) sampling: MC generates scenarios randomly from the renewable dis-
tribution function over the domain (the multi-dimensional allowable range of renewable
generation outputs, where the dimension equals to the number of renewable generation
units).

e Latin hypercube sampling (LHS): LHS is a statistical method for generating a sample of
plausible collections of parameter values from a multidimensional distribution, where
each sample is the only one in each axis-aligned hyperplane containing it. LHS ensures
that the ensemble of random numbers is representative of the real variability.

Besides the basic version, we have also developed an advanced version of the scenario genera-
tion module. The advanced module takes advantage of domain knowledge into the procedure
of distribution sampling. Instead of naively following the probability distribution function, the
sampling is also biased by the importance of each renewable generation unit. More specifically,
more scenarios will be generated associated with renewable generation units that are important
to the application target; while fewer scenarios will be generated associated with renewable
generation units with less influence to the application target.
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6.4 Module III: Scenario Reduction

The number of forecast scenarios generated through distribution sampling can still be large.
Such a large number of scenarios make it prohibitive to carry out the desired analysis if all sce-
narios need to be considered simultaneously, such as security-constrained optimal power flow
analysis that needs to co-optimize the involved contingencies. Therefore, a preprocessing pro-
cedure becomes a necessity for reducing the number of scenarios involved in the actual compu-
tation for analysis while still being able to capture representative patterns of the whole set of
scenarios.

Studies have found that different scenarios (contingencies, renewable energy forecasts, etc.)
may possess varying degrees of similarity, in terms of their influences to the system operating
states. More specifically, different scenarios can have a group property; in other words, scenari-
os within the same group are close to each other in terms of some similarity metrics. In addition,
influence of the scenarios in a same group upon the system can be well described by a few rep-
resentative scenarios belonging to the group. This consideration provides a way to reduce the
number of scenarios to be involved in actual computation.

Module IlI: Scenario Reduction
System S.E. Scenario
Snapshot Grouping Criteria
A 4 \ 2
Generated .| Scenario Power | _ Scenario R Scenario - Reduced
Scenarios “| Flow Analysis - Grouping - Selection "] Scenario List

Figure 6-4: The scenario reduction module

We have developed a dedicated module for scenario reduction, whose structure is illustrated in
Figure 6-4. This module implements the following procedure for scenario reduction:

e Step 1: Obtain the preliminary list of scenarios to be reduced.

e Step 2: Perform scenario power flow analysis. Potential influence of each scenario on the
system is evaluated by performing a power flow analysis on the system with the scenar-
io enforced.

e Step 3: Carry out scenario grouping. Similar scenarios should have similar influences on
the system. Therefore, the scenarios under study can be grouped based on the system
values obtained after the power flow analysis. For example, scenarios can be grouped
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based on their similarity of system voltage profiles, using some clustering techniques. In
practice, the criteria used for grouping scenarios are application-oriented.

Step 4: Select representative scenarios. Once the groups of the generated scenarios have
been found, representative scenarios in each group are to be determined. For example,
the center and a few points in each group can be selected as representative scenarios.
This pool of selected scenarios will be the actual list of scenarios to be involved in com-
putation.

To perform scenario reduction, the following data is required by the program as input:

The system network data: it provides the network topology and base case operating
states of the power system under study, which can be a state estimation (SE) snapshot of
the system. The data should be organized in industrial standard file formats, such as
PSS/E, PSLF, and CIM formats that are supported by the program.

The preliminary list of scenarios: it provides a list of scenarios (contingencies, renewable
energy forecasts, etc.). This list can contain a large number of scenarios, based on which
the scenario grouping will be carried out.

The scenario grouping and selection settings: Several preferences might also be specified
as input to the program. The user might provide preferences on the grouping criteria,
such as 1) based on which values (the voltage profile, system violations, etc.) the scenar-
ios will be grouped and 2) the approximate number of final scenarios to be output by the
program.

After applying the procedure of scenario reduction, a significantly reduced list of scenarios will

be determined by the module. This selected list of scenarios will be the ones that are actually

involved in the follow-up computation and analysis.
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7. Basic OPF Functionality Evaluations

In this chapter, the basic functional aspects of SuperOPF is evaluated and compared with that of
PSSE OPF. PSSE OPF implements an interior point method (IPM) as the solution method [58].
In PSSE OPF, discrete controls (transformers and switched shunts) are treated as continuous
and then rounded off to the nearest discrete value.

7.1  Solution Quality and Speed

The OPF solution are computed by PSSE OPF and SuperOPF and their objective values (system
generation costs) are compared. For the 118-bus system, both programs can compute the OPF
solution under the three loading conditions, as shown in Table 7-1. It can be observed that, the
cost of solution by SuperOPF is consistently lower (better) than that by PSSE OPF, although the
different (about 0.3%) is not that significant.

Table 7-1: OPF solution objective of 118-bus system

SuperOPF
System Load PSSE OPF

Continuous Improvement
Load1 4242 00MW 130098.01 129615.03 0.37%
Load?2 6777.88MW 234316.95 233612.61 0.30%
Load3 7313.51MW 257394.50 256527.03 0.34%

For the 3120-bus system, PSSE OPF cannot complete the computation (blown up after a few it-
erations); that is, this case is unsolvable for PSSE OPF. Therefore, only the solution by SuperOPF
is included in Table 7-2.

Table 7-2: OPF solution objective of 3120-bus system

CASE 3120 Load PSSE OPF SuperOPF

Base case 21174.71MW Unsolvable 3164727.15
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On the 118-bus system, the CPU times required by the two solvers are summarized. It can be
observed that, in terms of computational speed, PSSE OFP is better in that it can achieve the
OPF solution in fewer iterations and thus using less CPU time. However, the time difference is
not that significant and the two solvers are at the same level, as shown in Table 7-3.

Table 7-3: Solution time

CASE118  Load PSSE OPF SuperOPF

Load1l 4242 00MW 14 iter, 0.039 sec 16 iter, 0.054 sec
Load?2 6777 .88MW 14 iter, 0.027 sec 16 iter, 0.053 sec
Load3 7313.51MW 14 iter, 0.020 sec 16 iter, 0.053 sec

CPU time used by SuperOPF for the two testing system is summarized in Table 7-4. It needs to
be noted that, for the 3120-bus system, the two-staged method (that is, SuperOPF-IPM followed
by SuperOPF-TJU) is used to speed up the computation.

Table 7-4: CPU time vs problem size

118-bus 3120-bus
. 16 iter, Total Time  [SuperOPF-TJU Stage  SuperOPF-IPM Stage
CPU Time
0.054sec | 512 sec 62 iter, 2.62 sec 27 iter, 2.17 sec

7.2  Discrete Variables

Power system contains discrete variables (transformer tap ratios, phase shifts, switchable
shunts). SuperOPF is able to enforce discrete values for these variables by solving a correspond-
ing mixed-integer nonlinear program. The method for BSI SuperOPF to handle discrete varia-
bles is detailed in Appendix A. By implementing the mentioned discretization method in Su-
perOPF, the user can easily control the number of iterations (and roughly the closeness to the
true optimal MINLP solution) he/she wants to be carried out to determine all discrete variables.
For example, if the user wants to finish the discretization in 5 adjustments, he/she can specify
the threshold values to be, for example, %, =0.1, 0.2, 0.3, 0.4, 0.5 for the five discretization itera-
tions. The threshold value for the last discretization iteration is always set to 0.5 to ensure all
discrete variables are determined in the final solution. In this way, SuperOPF program provides
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user enough flexibility to balance between the quality of the discretization and the computa-

tional time to be consumed.

SuperOPF supports full discrete control adjustment with a sensitivity-based method (Appendix
A), while PSSE has only a very limited capability to enforce discrete controls by simple round-
ing off. The discretization results on the 118-bus system are shown in Table 7-5. It can be ob-
served that, the solution objective after SuperOPF discretization is very close to the relaxed con-

tinuous solution.

Table 7-5: Discretization on 118-bus system

SuperOPF

PSSE OPF

Continuous Discrete Change
Load1 4242.00MW 130098.01 129615.03 129615.49 0.000355%
Load2 6777.88MW 234316.95 233612.61 233613.99 0.000591 %
Load3 7313.51MW 257394.50 256527.03 256528.38 0.000526%

In the test on the 3120-bus system, the number of discretization steps is 5 and the discretizing
threshold values are 0.1, 0.2, 0.3, 0.4, 0.5 for the five steps. The evolution of the primal-dual gap
and objective value is shown in Figure 7-1.
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Figure 7-1: Change of primal-dual gap and objective values during re-optimizations for deter-
mining discrete control variables

7.3  Robustness and Optimality

In this test, several popular optimal power flow (OPF) solvers are tested with comparison of
their robustness to different initial conditions on the two benchmarking systems. The solvers
involved in the test include different solvers available in the newest MATPOWER V5.0, the OPF
solver provided in the PSSE package, and SuperOPF package. It needs to note that MATPOW-
ER supports only the following categories of optimization variables for OPF computation:

*  Vm: Bus voltage magnitudes,

*  Va: Bus voltage phase angles,

* Pg: Generator real power output, and

*  Qg: Generator reactive power outputs.
Besides these four categories of variables, SuperOPF also supports the following categories of
optimization variables:

*  Tap: tap ratio for transformer,

*  Phs: transformer phase shifter, and

*  Sht: switchable shunt capacitors.

In order to make the test comprehensive, the following eight solvers are involved in the test:
1. MIPS: MATPOWER native MATLAB interior point solver.
2. FMINCON: MATLAB native constrained function minimizer.
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KNITRO: the OPF solver using the commercial KNITRO package.
IPOPT: the OPF solver using the open source IPOPT package.

TRALM: OPF solver using the trust region based augmented Lagrangian method.
PSSE: OPF solver provided in the PSSE V33 package.

N o o e

SuperOPF 1: BSI SuperOPF solver, with optimization variables same to the above
MATPOWER solvers, that is, including only Vm, Va, Pg, and Qg.

8. SuperOPF 2: BSI SuperOPF solver, with extended optimization variables other than the
MATPOWER solvers, that is, including all the seven categories, Vm, Va, Pg, Qg, Tap, Phs,
and Sht.

In carrying out the test, there are 101 test cases for the first six solvers. These 101 test cases in-
clude the original base case system and 100 cases which are produced with random values of
bus voltage magnitudes, following the uniform random distribution within their lower and up-
per bounds. For SuperOPF solver, there are 1001 test cases, including the original base case sys-
tem and 1000 cases with random bus voltage magnitudes.

7.3.1 Evaluation of Robustness

The test results on the 118-bus system are summarized in Table 7-6. It can be observed that, on
this small test system, all involved solvers perform very well, in that all solvers can successfully
compute the OPF solution for all the involved test cases. Performance of the solvers cannot be
well differentiated on this small system.

Table 7-6: Test results on the 118-bus system

MIPS FMINCON KNITRO IPOPT TRALM
S‘I'::;ss 69/101 101/101 101/101 101/101 101/101
Solver PSSE SuperOPF SuperOPF
1 2
Suiccess 101/101 1001/1001 1001/1001
Rate

The test results on the 3120-bus system are summarized in Table 7-7. Compared to the results
on the 118-bus system, performance of the solvers is well differentiated on this larger 3120-bus
system. It can be observed that, for MATPOWER OPF solvers, all solvers can successfully com-
pute the OPF solution for the original base case system. However, all MATPOWER solvers, ex-
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cept the one using the KNITRO package, fail to solve any case with randomly initialized bus
voltage magnitudes. Even for the OPF solver based on the KNITRO package, only 35 out of 100
random initialized cases can be solved. The PSSE OPF solver fails to solve all the 101 test cases.

Table 7-7: Test results on the 3120-bus system

MIPS FMINCON KNITRO IPOPT TRALM
Success 1/101 1/101 36/101 1/101 1/101
RETE
Solver PSSE SuperOPF SuperOPF
1 2
Success
0/101 1001/1001 575/1001
Rate / / /

SuperOPF package, on the other hand, shows clearly its robustness in on this 3120-bus test sys-
tem. When the same optimization variables are considered as other solvers, that is, only Vm, Va,
Pg and Qg are adjusted for OPF computation, SuperOPF can successfully compute the OPF so-
lution for all 1001 cases. If the other types of variables, that is, Tap, Phs and Sht, are also consid-
ered in optimization, SuperOPF can still successfully computes the OPF solution for 575 cases
out of the 1001 test cases, though the complexity and nonlinearity of the OPF problem has been
significantly increased because of the extra optimization variables. Considering extra optimiza-
tion variables in computing the OPF solution results improved objective, as shown in Table 7-8.

Table 7-8: Effect of more optimization variables

Solver Variables Objective Difference

SuperOPF 1 Vm, Va, Pg, Qg 2229066.93 -

SuperOPF 2 Vm, Va, Pg, Qg, Tap, Phs, Sht 2224126.98 -4939.95 (-0.22%)

SuperOPF implements our proprietary two-staged OPF solution method. In the first stage, a
nonlinear dynamical system is constructed for the OPF problem, where the stable equilibrium
points (SEP) of the dynamical system have a one-to-one correspondence with the local optimal
solutions to the OPF problem. Trajectories of the nonlinear dynamical system are investigated
and a new point is obtained, which is closer to the OPF solution than the original initial point.
Figure 7-2 shows the evolution of the following values during the OPF computation:
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e the Lagrange gradient norm (upper graph, blue line),

¢ the maximum inequality constraint violation (upper graph, orange line),
¢ the maximum equality constraint violation (upper graph, white line), and
o the objective function (lower graph).

It can be observed that the Lagrange gradient and constraint violations have been successfully
reduced in the first stage, which indicates that the obtained point is indeed closer to the feasible
region and the OPF solution than the original initial point.

Two typical cases are also shown in Figure 7-3 for situations where SuperOPF failed to compute
the OPF solution (when all seven categories of variables are considered for optimization). For
the first situation, as shown in Figure 7-3(a), the second stage solver encounters some plateau
area in the search space and the Lagrange gradient and constraint violations become steady,
therefore, no sufficient step can be found to escape from the plateau area. For the second situa-
tion, as illustrated in Figure 7-3(b), the Lagrange gradient blows up in the second stage solver,
after traveling in the search space in a few iterations.

SuperOPF Stage | ) SuperOPF Stage 2

Figure 7-2: SuperOPF converged case
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Figure 7-3: SuperOPF non-converged cases

7.3.2 Evaluation of Optimality

OPF problem is known to be a complicated nonlinear and nonconvex optimization problem.
Therefore, there could have multiple local optimal solutions. However, solution methods like
interior point method (IPM) and sequential quadratic programming (SQP) are all local ones, in
the sense that starting from a given initial point, they can only attain a local optimal solution
and cannot reach other local optimal solutions without extra perturbations (which is still not
guaranteed to lead to other local optimal solutions if there indeed exist multiple local optimal
solutions).

Recent research by ]. Lavaei, et al [57], proposed to convexify the nonlinear AC OPF problem
and use a semi-definite programming (SDP) optimization to solve it. The benefit of this proce-
dure is that, under some mild assumptions, the global optimal solution to the original AC OPF
problem can be achieved when the primal-dual gap of the SDP reaches zero. The disadvantage
of this method is that the dimension of the SDP produced by convexification grows exponential-
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ly as the dimension of the original AC OPF problem increases; therefore, SDP-based methods
are still only applicable for small systems with reasonable computational resource.

Table 7-9: SuperOPF optimality for 118-bus system

Sigma Optimality

SuperOPF Upper bound (rank==1) L
1.0 129654.6175 129660.6864 129660.6927 2.4000 99.9953
1.2 163711.8151 163717.2952 163717.3005 2.4000 99.9966
1.4 198501.5867 198505.4117 198505.4180 2.4000 99.9981
1.6 234070.5966 234070.6542 234070.6541 0.6000 100.0000
1.8 270659.8427 270659.8443 270659.8427 0.0000 100.0000
2.0 309043.8109 309043.8140 309043.8109 0.0000 100.0000

In this simulation, the SDP solutions for the 118-bus system are calculated under different load-
ing conditions and compared to solutions by SuperOPF. The solutions obtained by the two
methods are summarized in Table 7-9. It can be observed that, compared with the global opti-
mal solution by the SDP convexification (when the duality gap is zero), the solutions by Super-
OPF are numerically the same (optimality degree >99.99%). Therefore, the solution quality of
SuperOPF is very appealing, in that its solutions are numerically same to the global optimal so-
lutions obtained by SDP convexification.

74 Summary

In this chapter, the two OPF programs, namely the commercial PSSE OPF and SuperOPF are
evaluated and compared in terms of the basic OPF functionality. The evaluation shows that Su-
perOPF outperforms PSSE in the following aspects:

* Objective value: the objective values achieved by SuperOPF are consistently slightly bet-
ter than that by PSSE OPF.

* Discrete control adjustment: PSSE OPF has only a very limited capability to handle dis-
crete control variables by simple rounding-off to closest discrete values. In contrast, Su-
perOPF possesses a more complex but also flexible capability for handling discrete con-
trol variables.
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* Robustness to bad initial conditions: The evaluation also has shown that SuperOPF is
very robust to bad initial conditions.

In terms of computational speed, PSSE OPF outperforms SuperOPF, which may be potentially
due to that PSSE OPF engine is developed in FORTRAN, while SuperOPF is developed in C++.
However, the difference in computational speed is not very significant (at same level in terms of
CPU time). The comparison result is also briefly summarized in Table 7-10.

Table 7-10: Overall comparison of the two OPF programs

PSSE OPF BSI SuperOPF
Objective Value v
Discrete Control v
Robustness \
Speed Yl
Language FORTRAN C++

Our multi-scenario SuperOPF (SuperOPF-MS) solver and program is developed to address the
need of computing OPF solutions involving uncertain scenarios (e.g. contingencies, renewable
energy forecasts, etc.) for power networks nowadays that are operated in a more and more dy-
namic environment. The central task for SuperOPF-MS solver is to solve the OPF problem that
will result the best expected objective (such as the minimum system total power losses or gen-
eration costs) spanning the planning horizon. Therefore, the co-optimization that needs to be
solved in order to get the desired optimal power flow solution can be modeled as the optimiza-
tion problem Eq. (2-3). SuperOPF utilizes an enhanced nonlinear optimizer to solve the compli-
cated nonlinear optimization problem Eq. (2-3) in its genuine nonlinear format. More details
about SuperOPF can be found in other parts of this report. Therefore, we can summarize the
differences between PSSE PSCOPF and SuperOPF in Table 7-11. As can be seen from the table,
SuperOPF provides a more flexible tool to accomplish more comprehensive security-
constrained optimal power flow analysis.

Table 7-11: Comparison between SuperOPF and PSCOPF

Solver SuperOPF PSSE PSCOPF
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Contingency
Filtering

Objective
Function

Solution
Method

Yes. Representative contingencies are
identified via a grouping process and
retained for computation. The group-
ing process can be realized based on
different criteria preferred by the user,
such as

e Violation level

e Voltage profile

e Combination of above two
of the post-contingency power flow
solution.

Yes. Dominant contingencies are iden-
tified and retained for computation.
Dominance or non-dominance of a
contingency is determined based on
the violation level of the post-
contingency power flow solution.

A pool of objective functions to be op-
timized that is more flexible for user to
choose, such as
e System generation costs.
e System power losses.
e Deviation of the control between
the base case and post-
contingency conditions.

To minimize the adjustments of con-
trol to avoid violations in both the base
case and all post-contingency condi-
tions.

Use our enhanced proprietary solver
to optimize the objective function sub-
ject to both the base case and all con-
tingency constraints. The co-
optimization problem is solved in its
genuine nonlinear format.

Use Bender’s decomposition technique
and successive linear programming
method. Controls are determined and
applied to the base case system in an
iterative process to avoid violations for
each contingency.
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8.  Results on Contingency-Constrained Co-optimization

8.1 Simulation Targets and Settings

The simulation in this report is targeted for the following tasks:

*  SuperOPF version which can co-optimize the objective function and the updated worst
scenario for voltage stability (requested by CAISO)

* Demonstrate Deliverable 1 on CAISO system data

*  SuperOPF version that can co-optimize the objective function, operational reserve and
the renewable energies. In addition, the ramp rate of renewable energy should be in-
cluded.

*  Demonstrate Deliverable 3 on CAISO system data

8.1.1 The test system

The test system is a CAISO 6534-bus EMS state estimation case, of the following dimensions:
*  Number of buses: 6534
*  Number of loads: 2901
*  Number of generators: 1903
*  Number of branches: 8295
* Number of transformers: 294
*  Number of switched shunts: 520
+ System load: 96907.09MW +j 10126.65MVar

The objective function of the simulation is to minimize the base case system real power losses.
Two types of scenarios are considered in the simulation, including

*  Worst N-1 transmission line contingencies, and

*  Wind power generation forecast scenarios.

In this simulation, for co-optimization with reserves, the generator(s) at the slack bus(es) is
treated as the reserve source. In other words, the remained generation capability of the slack
generator(s) will be considered as available up-spinning reserve for contingency and renewable
energy forecast scenarios.

8.1.2 Hardware and software

All the simulations in this report have been carried out on a personal computer of the following

configurations:
* CPU: Intel Core i7-3820QM Quad 2.70GHz (Turbo Boost up to 3.7 GHz) with 8MB
shared L3 cache

¢ Memory: 16GB 1600MHz DDR3L SDRAM
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8.1.3

Storage: 512GB Flash Storage Drive
OS: Ubuntu Linux 14.10 AMD64, Linux Kernel 3.16.0, GCC4.9.1
Software: BSI SuperOPF v3.80

Optimization variables

In the simulations, the following categories of optimization variables are adjusted by SuperOPF

in the OPF computations:

8.14

Vm: Bus voltage magnitudes.

Va: Bus voltage phase angles.

Pg: Generator real power outputs.

Qg: Generator reactive power outputs.
t: ULTC transformer tap ratios.

s: phase shifters.

b: switchable shunts.

Stopping criteria

For the involved simulations, the stopping criteria for the OPF computation by BSI SuperOPF

are specified as follows:

8.1.5

The maximum allowable iterations: 500.

The convergence tolerance for P-mismatches is 0.01IMW.

The convergence tolerance for Q-mismatches is 0.1MVar.

The convergence tolerance for thermal limits is 0.0IMVA.

The convergence tolerance for voltage magnitude bounds is 1e-4 p.u.

The convergence tolerance for shunt device bounds is 0.01MVar.

The convergence tolerance for transformer tap ratio bounds is 1e-4.

The convergence tolerance for phase shifter phase angle bounds is 1e-4 rad.

Worst Contingencies for Co-optimization

This simulation is to use SuperOPF to co-optimize the objective function and the worst scenari-

os for voltage stability. In this simulation, all N-1 transmission line contingencies in area #9 are
generated and BSI voltage stability analysis (VSA) program is used to calculate load margins for
the post-contingency systems. Contingencies are ranked in terms of their margins and worst

contingencies are identified as those ones with least load margins.

Table 8-1: Identified worst contingencies

CtgID  Contingency Details
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g DISCONNECT BRANCH FROM BUS 99982 TO BUS 10025 CKT1 /* SNJUAN-
B-A 345.0 KV Line

1 DISCONNECT BRANCH FROM BUS 99982 TO BUS 10292 CKT1 /* SNJUAN-
SNJUAN 345.0 KV Line

o4 DISCONNECT BRANCH FROM BUS 10369 TO BUS 99986 CKT 1 /* WMESA-
FCORNR 345.0 KV Line

’8 DISCONNECT BRANCH FROM BUS 11111 TO BUS 11017 CKT1 /* NEWMN-
ARROYO 345.0 KV Line

a4 DISCONNECT BRANCH FROM BUS 11093 TO BUS 11213 CKT 1 /* LUNA-
LUNA 345.0 KV Line

35 DISCONNECT BRANCH FROM BUS 11217 TO BUS 11093 CKT1 /* AFTON-
LUNA 345.0 KV Line

36 DISCONNECT BRANCH FROM BUS 16104 TO BUS 11093 CKT1 /* SPRNGR-
LUNA 345.0 KV Line

There are seven N-1 transmission line contingencies identified by BSI VSA that have zero load
margins; in other words, these contingencies are insecure in that the system cannot support the
system load demands should any of these contingences happen. The details of these worst con-
tingencies are summarized in Table 8-1.

8.2 Base-case + Individual Contingency Co-optimization

In this test, SuperOPF is used to co-optimize the base case system and individual worst contin-
gency scenarios. Results of the SuperOPF multi-scenario co-optimization carried over these con-
tingency cases are summarized in Table 8-2 and Table 8-3. More specifically, the co-
optimization results without considering operational reserves are summarized in Table 8-2,
while the results with operational reserves are summarized in Table 8-3.

Table 8-2: SuperOPF co-optimization results, without reserve

Real Losses CPU Time

Scenario % of System Load Iterations

(MW)

(sec)

Base case before OPF 2793.42 2.883% - -
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1624.55 1.676% 43 4.88
1693.85 1.748% 50 13.10
1687.92 1.742% 56 26.58
1692.73 1.747% 80 27.42
1642.20 1.695% 70 18.33
1745.98 1.802% 57 15.28
1639.96 1.692% 62 19.71
Unsolvable, OPF solution not achievable

Table 8-3: SuperOPF co-optimization results, with reserve

Scenario g\i:i;osses % of System Load Iterations f;Ie)g Time
2793.42 2.883%
1624.55 1.676% 43 4.88
1624.32 1.676% 68 17.66
1624.55 1.676% 54 17.08
1624.56 1.676% 69 22.67
1623.57 1.675% 131 36.19
1633.94 1.686% 70 18.47
1624.36 1.676% 65 17.14
Unsolvable, OPF solution not achievable
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It can be observed that, SuperOPF contingency-constrained co-optimization can achieve the
OPF solution for six out of seven worst contingencies. It can also be observed that the objective
values, i.e., (base case) system real power losses can be reduced if operational reserves are
available as corrective/ preventive controls for the post-contingency operation.

Another observation is that the objective of base case + single contingency (Ctg. 28 and Ctg. 35)
can even be better than that of base case only OPF solution. This is because that the involvement
of the contingency actually brings the side-effect of reduced OPF cost function. In fact, the en-
forcement of the contingency, that is, opening the corresponding transmission line, can be re-
garded as a line switching. Indeed, a separate study carried out on this topic has showed inter-
esting results that proper line switching schemes can be an effective way for improving quality
indices of power system operations. These indices can include, but not limited to:

e The objective values (production costs, system losses, system violations, etc.) for optimal
power flow analysis.

e System load margins for system voltage stability analysis and enhancement.

e System transient stability analysis and enhancement.

Treating the on-off status of transmission lines in a power system, tine switching can be mod-
eled as a complicated mixed-integer nonlinear programing (MINLP) problem. However, the
detailed discussion of line-switching is beyond the scope of this report.

8.3 Base-case + All Contingency Co-optimization

In this simulation, BSI SuperOPF is used to co-optimize the base case system with all the identi-
fied worst contingencies (excluding the unsolvable contingencies). The co-optimization results
are summarized in Table 8-4, including both co-optimization without considering generation
reserves and that with generation servers. A condensed summary of the results of both co-
optimizations with individual and all worst contingencies is provided in Figure 8-1.

Table 8-4: All-contingency-constrained co-optimization results

Scenario mzdosses % of System Load Iterations Ezg Time
Base case before OPF 2793.42 2.883% - -

Base case only OPF 1624.55 1.676% 43 4.88

Base case * AlLCIES | 17,; ¢ 1.803% 173 430.25

(No reserve)
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Figure 8-1: Contingency-constrained co-optimization
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9.  Results on Renewable-Constrained Co-optimization

91 Simulation Target

In this simulation, renewable energy-constrained OPF computation is carried out using BSI Su-
perOPF. To simulate the effects of renewable energy penetration to the system, 20% system
generators are randomly selected as wind generators. Therefore, 232 wind power generators are
attached to the system.

Seven forecast scenarios of the wind power generations are produced for the simulation. Fore-
casts of real and reactive power generations for the wind generators are specified in the scenario
file, where each forecast scenario is associated with a set of varied wind power outputs. Each
forecast consists of random outputs of the generators varying uniformly in the range of +25%
of the initial outputs. For real-life applications, a scenario reduction procedure is indispensable
in order to get a reduced list of credible renewable forecasts.

All other simulation settings, namely, the test system, the hardware and software environment,
the optimization variables, and the stopping criteria, are the same as that in Chapter 8.

9.2  Base-case + Single Forecast Co-optimization

In this test, BSI SuperOPF is used to co-optimize the base case system and individual renewable
energy forecast scenarios. Results of the BSI SuperOPF multi-scenario co-optimization carried
over these renewable energy forecast cases are summarized in Table 9-1 and Table 9-2. More
specifically, the co-optimization results without considering operational reserves are summa-
rized in Table 9-1, while the results with operational reserves are summarized in Table 9-2.

Table 9-1: Single-forecast-constrained co-optimization results, without reserve

Scenario mosses % of System Load Iterations :;I:)J Time
Base case before OPF 2793.42 2.883% - -

Base case only OPF 1624.55 1.676% 43 4.88

Base case + Scn.1 1703.15 1.758% 61 18.67

Base case + Scn.2 1623.60 1.675% 148 47.97
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Base case + Scn.3 1794.48 1.852% 129 37.59
Base case + Scn.4 1624.43 1.676% 74 23.05
Base case + Scn.5 1681.97 1.736% 79 26.05
Base case + Scn.6 1662.83 1.716% 115 33.03
Base case + Scn.7 1623.90 1.676% 156 74.12

It can be observed that, results similar to that SuperOPF contingency-constrained co-
optimization are obtained. It can also be observed that the objective values, i.e., (base case) sys-
tem real power losses can be reduced if operational reserves are available as correc-
tive/ preventive controls for the post-forecast operation.

Table 9-2: Single-forecast-constrained co-optimization results, with reserve

Real Losses

Scenario (MW) % of System Load Iterations

Base case before OPF 2793.42 2.883% - -
Base case only OPF 1624.55 1.676% 43 4.88
Base case + Scn.1 1624.31 1.676% 68 24.46
Base case + Scn.2 1624.43 1.676% 91 35.92
Base case + Scn.3 1624.31 1.676% 62 20.07
Base case + Scn.4 1624.18 1.676% 76 29.07
Base case + Scn.5 1624.34 1.676% 101 29.00
Base case + Scn.6 1622.54 1.674% 78 23.49
Base case + Scn.7 1622.65 1.674% 65 20.09

Another observation is that the objective of base case + single renewable scenario co-
optimization can even be better than that of base case only OPF solution. This is a consequence
of the way of treating the renewable production in the simulation. Considering that all the re-
newable energy produced needs to be absorbed by the power network, the renewable produc-
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tions (for a renewable scenario) are treated as equivalent (negative) loads connected to the sys-
tem. Therefore, the involvement of renewable production may actually reduce the system total
load, which in turn results in reduced system losses in the OPF solution.

9.3 Base-case + All Forecasts Co-optimization

In this simulation, BSI SuperOPF is used to co-optimize the base case system with all the re-
newable energy forecasts. The co-optimization results are summarized in Table 7, including
both co-optimization without considering generation reserves and that with generation servers.
A condensed summary of the results of both co-optimizations with individual and all renewa-
ble energy forecasts is provided in Figure 3.

Table 9-3: All-forecast-constrained co-optimization results

Real L PU Ti
Scenario ca’ Losses % of System Load Iterations CPU Time
(MW) (sec)
Base case before OPF 2793.42 2.883% - -
Base case only OPF 1624.55 1.676% 43 4.88
B + All
asecase £ AILCES | 15 1 1.853% 330 1212.42
(No reserve)
+
Base case * AILCIES | 1)) ¢ 1.674% 380 1646.38
(With reserve)
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Figure 9-1: Renewable-energy-constrained co-optimization
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10. Results on Ramping-Constrained Co-optimization

10.1 Simulation Targets and Settings

The simulation in this report is targeted for the following tasks:
+  Co-optimization SuperOPF software equipped with the ramping constraints of genera-
tions (requested by CAISO).
* Demonstrate the SuperOPF with ramping constraints on CAISO system data.

The objective function of the simulation is to minimize the base case system real power losses.
Two types of scenarios are considered in the simulation, including

*  Worst N-1 transmission line contingencies, and

*  Wind power generation forecast scenarios.

In the simulations, for co-optimization with reserves, the generator(s) at the slack bus(es) is
treated as the reserve source. In other words, the remained generation capability of the slack
generator(s) will be considered as available up-spinning reserve for contingency and renewable
energy forecast scenarios.

In the simulations, the ramping rates for generators are assigned values uniformly distributed
within the range of SMW through 8MW per minute. The generation ramping rates for practical
usage can be specified in the control file for SuperOPF co-optimization, which follows the speci-
fication of PSSE OPF raw data file format. Availability of ramping is considered for different
time periods in the simulations. More specifically, ramping constraints for 5-minute, 10-minute
and 15-minute are considered. The ramping capability for a generation is computed as the
product of its ramping rate and the length of the time period. Both ramping-up and ramping-
down capabilities for each generator are considered the same in the simulations of this report.
SuperOPF program supports specifying different ramping-up and ramping-down rates for a
generator.

All other simulation settings, namely, the test system, the hardware and software environment,
the optimization variables, and the stopping criteria, are the same as that in Chapter 8.

In this chapter, simulations of SuperOPF co-optimization with ramping constraints are carried

out for two themes, namely, co-optimizing worst contingencies and co-optimizing renewable
forecasting scenarios.
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10.2 Contingency Co-optimization with Ramping Constraints

The first simulation is to use SuperOPF to co-optimize the objective function and the worst sce-
narios for voltage stability, considering ramping constraints. In this simulation, all N-1 trans-
mission line contingencies in area #9 are generated and BSI voltage stability analysis (VSA)
program is used to calculate load margins for the post-contingency systems. Contingencies are
ranked in terms of their margins and worst contingencies are identified as those ones with least
load margins.

Table 10-1: Identified worst contingencies

CtgID  Contingency Details

8 DISCONNECT BRANCH FROM BUS 99982 TO BUS 10025 CKT1 /* SNJUAN-
B-A 345.0 KV Line

1 DISCONNECT BRANCH FROM BUS 99982 TO BUS 10292 CKT1 /* SNJUAN-
SNJUAN 345.0 KV Line

o4 DISCONNECT BRANCH FROM BUS 10369 TO BUS 99986 CKT 1 /* WMESA-
FCORNR 345.0 KV Line

)8 DISCONNECT BRANCH FROM BUS 11111 TO BUS 11017 CKT1 /* NEWMN-
ARROYO 345.0 KV Line

35 DISCONNECT BRANCH FROM BUS 11217 TO BUS 11093 CKT 1 /* AFTON-
LUNA 345.0 KV Line

36 DISCONNECT BRANCH FROM BUS 16104 TO BUS 11093 CKT1 /* SPRNGR-
LUNA 345.0 KV Line

There are six N-1 transmission line contingencies identified by BSI VSA that have zero load
margins; in other words, these contingencies are insecure in that the system cannot support the
system load demands should any of these contingences happen. The details of these worst con-
tingencies are summarized in Table 1.

10.2.1 Base-case + Individual Contingency Co-optimization

In this test, SuperOPF is used to co-optimize the base case system and individual worst contin-
gency scenarios. Results of the SuperOPF multi-scenario co-optimization carried over these con-
tingency cases are summarized in Table 2.

Table 10-2: SuperOPF co-optimization results
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CPU
Real Losses % of System

Scenario (MW) Load Iterations ;l;i;l)e
2793.42 2.883% - -
1624.55 1.676% 43 4.88
1624.32 1.676% 68 17.66
1624.55 1.676% 54 17.08
1624.56 1.676% 69 22.67
1623.57 1.675% 131 36.19
1624.36 1.676% 65 17.14
1624.24 1.676% 61 14.03
1854.04 1.913% 43 4.53
1854.10 1.913% 50 11.84
1854.09 1.913% 49 11.54
1854.09 1.913% 51 12.15
1854.06 1.913% 48 11.26
1878.13 1.938% 48 11.16
1854.09 1.913% 52 12.27
1729.78 1.785% 47 4.96
1728.76 1.784% 86 20.36
1729.03 1.784% 52 12.25
1729.02 1.784% 52 12.51
1728.70 1.784% 63 14.72
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1751.43 1.807% 62 14.40

1728.70 1.784% 58 13.56

1682.87 1.737% 49 524

1682.42 1.737% 66 15.48

1681.89 1.736% 72 17.26

1682.64 1.737% 67 16.24

1681.60 1.735% 70 16.22

1702.83 1.757% 78 18.31

1682.19 1.736% 70 16.71

It can be observed that, SuperOPF contingency-constrained co-optimization can achieve the
OPF solution for these worst contingencies. It can also be observed that the objective values, i.e.,
(base case) system real power losses can be reduced if operational reserves are available as cor-
rective/preventive controls for the post-contingency operation. In addition, the ramping con-
straints newly introduced

10.2.2 Base-case + All Contingency Co-optimization

In this simulation, SuperOPF is used to co-optimize the base case system with all the identified
worst contingencies. The co-optimization results are summarized in Table 3. A condensed
summary of the results of both co-optimizations with individual and all worst contingencies is
provided in Figure 3.

Table 10-3: All-contingency-constrained co-optimization results

Real Losses % of System ) CPU Time
Iterations
(MW) Load (sec)

Scenario

2793.42 2.883%

1624.55 1.676% 43 4.88

1633.69 1.686% 134 314.83
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1877.02 1.937% 195 365.86

1750.14 1.806% 137 253.86

1701.81 1.756% 114 212.81

Contingency-constrained cooptimization
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Figure 10-1: Contingency-constrained co-optimization

10.3 Renewable Co-optimization with Ramping Constraints

In the second simulation, renewable energy-constrained OPF computation is carried out using
SuperOPF, considering ramping constraints. To simulate the effects of renewable energy pene-
tration to the system, 20% system generators are randomly selected as wind generators. As a
result, it is assumed that there are 232 wind-power generators attached to the system.

Seven forecast scenarios of the wind power generations are produced for the simulation. Fore-
casts of real and reactive power generations for the wind generators are specified in the scenario
file, where each forecast scenario is associated with a set of varied wind power outputs. Each
forecast consists of random outputs of the generators varying uniformly in the range of +25%
of the initial outputs. For real-life applications, a scenario reduction procedure is indispensable
in order to get a reduced list of credible renewable forecasts.
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For practical usage of SuperOPF, the assignment of renewable generators and forecasts of their
outputs are specified in the input control file.

10.3.1 Base-case + Single Forecast Co-optimization

In this test, SuperOPF is used to co-optimize the base case system and individual renewable en-
ergy forecast scenarios. Results of the SuperOPF multi-scenario co-optimization carried over
these renewable energy forecast cases are summarized in Table 4.

Table 10-4: Single-forecast-constrained co-optimization results

Scenario Real Losses % of System Iterations "(lEiPn[lJe
(MW) Load (sec)
Base case before OPF 2793.42 2.883% - -
Base case 1624.55 1.676% 43 4.88
Base case + Scn.1 1624.31 1.676% 68 24.46
Base case + Scn.2 1624.43 1.676% 91 35.92
Base case + Scn.3 1624.31 1.676% 62 20.07
Base case + Scn.4 1624.18 1.676% 76 29.07
Base case + Scn.5 1624.34 1.676% 101 29.00
Base case + Scn.6 1622.54 1.674% 78 23.49
Base case + Scn.7 1622.65 1.674% 65 20.09
Base case 1854.04 1.913% 43 4.53
Base case + Scn.1 1854.04 1.913% 53 12.40
Base case + Scn.2 1854.95 1.914% 55 12.97
Base case + Scn.3 1853.23 1.912% 63 15.70
Base case + Scn.4 1854.21 1.913% 62 14.81
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It can be observed that, results similar to that SuperOPF contingency-constrained co-
optimization are obtained. It can also be observed that the objective values, i.e., (base case) sys-
tem real power losses can be reduced if operational reserves are available as correc-
tive/ preventive controls for the post-forecast operation.

Base case + Scn.5 1854.09 1.913% 50 11.79

Base case + Scn.6 1853.25 1.912% 61 14.38

Base case + Scn.7 1854.53 1.914% 73 17.16
1729.78 1.785% 47 4.96
1728.97 1.784% 73 17.53
1729.06 1.784% 72 17.15
1729.60 1.785% 58 13.58
1729.63 1.785% 55 13.35
1729.12 1.784% 65 15.60
1729.60 1.785% 60 14.53
1729.07 1.784% 61 14.46
1682.87 1.737% 49 524
1681.83 1.736% 71 19.01
1682.48 1.736% 67 16.11
1682.89 1.737% 58 13.64
1682.94 1.737% 55 12.95
1682.39 1.736% 57 13.40
1682.17 1.736% 63 15.46
1682.91 1.737% 55 13.12
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10.3.2 Base-case + All Forecasts Co-optimization

In this simulation, SuperOPF is used to co-optimize, with ramping constraints, the base case
system with all the renewable energy forecasts. The co-optimization results are summarized in
Table 5. A condensed summary is provide in Figure 4 for the results of both co-optimizations
with individual and all renewable energy forecast scenarios.

Table 10-5: All-forecast-constrained co-optimization results

Scenario Real Losses % of System Iterations CPU Time
(MW) Load (sec)

Base case before OPF 2793.42 2.883% - -

Base case only OPF 1624.55 1.676% 43 4.88
No Ramping 1622.66 1.674% 380 1646.38

Base case + | 5-min Ramping 1854.57 1.914% 260 737.60

All Scenari-

0s 10-min Ramping 1728.77 1.784% 274 745.83
15-min Ramping 1681.81 1.735% 192 513.76
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Figure 10-2: Renewable-energy-constrained co-optimization
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11. Power Market Related Calculations and Outputs

11.1 CAISO Energy Pricing

Locational marginal pricing (LMP) is the pricing method that a utility uses to price energy pur-
chases and sales in the power market. LMP is “the marginal cost of supplying, at least cost, the
next increment of electric demand at a specific location (node) on the electric power network,
taking into account both supply (generation/import) bids and demand (load/export) offers and
the physical aspects of the transmission system including transmission and other operational
constraints [90]”.

In CAISO’s power market practice, the LMPs for energy are calculated respecting network loss-
es and eventual transmission congestion [91]. Load and generating unit contributions to the sys-
tem power balance differ with respect to network energy losses and eventual transmission con-
gestion. Energy market clearing prices are differentiated according to specific conditions of ac-
tual power injections and withdrawals at market participant locations. In general, energy prices
are different at each network node, i.e. they present the LMPs. In CAISO, the components of
LMPs are calculated as:

LMPpoge = MCPygq - System marginal energy cost
+MCPreq - (1 — Pfrode)/Plrode - Loss component (11-1)
+ Yiineen S Flfilgge - TSCline - Congestion component
where:

e LMPs is the LMP for energy at network node.
e MCP,, is the market clearing price for energy requirement.
®  Pfuoe is the loss penalty factor for network node.
e SFin is the shift factor for transmission line and network node.
e TSCiir is the transmission shadow cost for line constraint.
All these components of LMP are calculated for each pricing node and each time interval.

The co-optimization AC OPF solver calculates shadow prices as a by-product of the optimiza-
tion process. These shadow prices indicate the effect on the objective function of the various
constraints. Shadow prices related to the system power balance represent the marginal energy
costs. Therefore, the system marginal energy cost is

MCP = 2 (11-2)

where, 1 is the vector of Lagrange multipliers associated with the nonlinear equality constraints
(i.e., power flow balance equations) of the AC OPF problem.

For aggregated pricing locations presenting default load zones, custom load zones and trading hubs,
the aggregated market prices (AMP) are calculated. The AMPs are calculated in post optimiza-
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tion processing as a weighted sum of energy LMPs at pricing locations belonging to an aggre-
gated pricing location, that is,

AMPypnoge = Z Wpnode * LM Pppoge (11—3)
Pnode€eAPnode

The weighting factors present contribution of individual energy schedules at pricing locations
relative to the total energy schedule at an aggregated pricing location, that is:

EPnode

WapPnode = (11-4)

ZPnodeeAPnode EPnode

When nomogram constraints are considered, the above standard definition of LMP can be ex-
tended to reflect impact of nomogram constraints. The nomogram price component is calculat-
ed as:

LMPISL = ) SFRSe - ISCyne (11-5)
lineeENOM

where, ISCj;,. is the interface shadow cost for the line (corridor).

11.2  SuperOPF Calculations and Outputs Related to Power Market

Thanks to the full AC OPF formulation implemented in SuperOPF and its comprehensive mod-
eling capability to handle a comprehensive set of objective function, constraints and optimiza-
tion variables, there is a ready correspondence between SuperOPF outputs and components
needed for LMP calculation.

Table 11.1 LMP calculation and SuperOPF outputs

LMP Component SuperOPF Output

The vector of Lagrange multipliers associated with the nonlinear
MCP equality constraints (i.e., power flow balance equations) of the Su-
perOPF solution.

The vector of Lagrange multipliers associated with the thermal/flow
limit imposed on the line. TSCii, takes a nonzero value only if con-

5Ciie gestion happens (i.e., the thermal limit constraint is binding for the
line).
The vector of Lagrange multipliers associated with the flow limit
1SC; imposed on the interface (line group). ISCii. takes a nonzero value

only if congestion happens (i.e., the flow limit constraint is binding
for the interface).
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12.  CAISO Feedback on SuperOPF

12.1 Introduction

In previous discussion with CAISO, they articulated the need for non-linear OPF for the
CAISO power market. Development under this project has provided and demonstrated
most of the functionality that was seen as necessary to produce a SuperOPF tool with
the necessary functions for application in the power market.

This functionality includes the following.

Operations & Power Market Applications:
e SuperOPF with handling voltage stability as a constraint is of value to the
power market
e Ramp Constraints in model
e Co-optimization of worst scenarios especially with renewables
¢ Inclusion of AGC response into SuperOPF to deal with renewable integration
e Require good real-time performance

General Application:
e Reserve requirements with renewables

Planning & Operations Applications:
e Static & Dynamic stability constraints with contingency

12.2 Feedback from CAISO Director

Bigwood Systems, Inc. (BSI) has demonstrated promising simulation results for the
study of co-optimization of stochastic multi-contingency scenarios SuperOPF using
BSI's production-grade SuperOPF. The solution method robustly computes the OPF so-
lutions for all the involved scenarios and under all feasible loading conditions, even
though the post-contingency state may be insecure. Numerical results based on practi-
cal study cases are presented in both the Final Report and the Supplementary Report.

Beside the typical capabilities of traditional OPF programs such as handling industry
standard power systems network models data formats, data management for SuperOPF
constructs, handling of control variables for real and reactive power and support for ob-
jective functions of cost, losses and minimum violations of target voltage profiles, the
BSI SuperOPF also possesses the capability of handling static and dynamic stability re-
quirements, handling contingent and varying load and generation scenarios, and han-
dling uncertainties associated with high levels of renewable energy penetrations. The
SuperOPF program has a modularized structure and is designed to be ready for future
extensions. It is flexible and convenient for further development to support more data
formats and to enclose other effective linear and nonlinear solvers into the current im-
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plementation. The BSI SuperOPF supported simulation results makes it a very promis-
ing and viable analysis tool for power industry.

12.3 Additional SuperOPF Applications identified by CAISO

CASIO - Outage Scheduling
One key ISO’s responsibility: scheduling and coordination of transmission
equipment outages (periods when equipment is out of service). Outages can last
from 15 minutes to several weeks or months, and can be continuous or intermit-
tent.
* Planned outage
* Unplanned outage

CASIO - Advanced Voltage Control
Real-time Power Market
e 5-minute Ahead Power Market
e Project Idea: to apply advanced voltage control before 5-minute ahead power
market to relieve congestion

CAISO - Long-term Project
SuperOPF for power market application
e LMP calculation based on ACOPF model (instead of linearized OPF model)

with comprehensive and accurate representation of static as well as dynamic
constraints.

Page 105 of 135



13. Summary

In this report, the impact of co-optimization in improving key challenges in the CAISO system
has been studied. In this report, simulations have been carried out to evaluate contingency-
constrained and renewable-energy-constrained co-optimized OPF computation using Super-
OPF to perform on CAISO system EMS data. The results suggest that SuperOPF is an effective
tool for multi-scenario (either contingencies or renewable energy scenarios or their combina-
tions), co-optimized OPF analysis, which is applicable to handle a diversity of scenarios for
large-scale power systems.

In this study, simulations have been carried out using SuperOPF to perform contingency-
constrained and renewable-energy-constrained co-optimized OPF computation considering
generation ramping constraints on CAISO system EMS data. The results suggest that SuperOPF
is an effective tool for multi-scenario cooptimized OPF analysis, which is applicable to handle a
diversity of scenarios and a comprehensive set of constraints for large-scale power systems.

In summary, SuperOPF is a powerful and easy-to-use electric power network analysis tool. It
goes beyond traditional power flow analysis to provide the utility the ability to fully optimize
and refine the power transmission system. Cooperating with other power system analysis tools,
SuperOPF helps realize a comprehensive and reliable optimization of power system under rap-
idly changing operating conditions.

SuperOPF improves the efficiency and throughput of the power system performance studies by
adding intelligence to the power flow solution process. Whereas the conventional power flow
relies on the engineer to systematically investigate a variety of solutions before arriving at a sat-
isfactory good solution, SuperOPF automatically adjusts controls to determine the best solution.
From virtually any reasonable starting point, you are assured that one or multiple optimal solu-
tions are attained, solutions that all simultaneously satisfy system constraints given a pre-
determined objective. These applications place two primary requirements on an optimal power
flow program. First, the modeling must reflect the actual behavior of the system components.
Second, the solutions must be obtained in a robust and efficient manner. SuperOPF meets these
two requirements. The latest advances in sparse techniques and nonlinear optimization have
been incorporated in the solution algorithm. Robust and fast solution algorithms are developed
and integrated into SuperOPF.

SuperOPF is capable of dealing with a variety of objective functions needed in power system
operation and planning, including;:

e Minimizing fuel cost

e Minimizing active power losses

e Minimizing reactive power losses
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¢ Minimizing active power slack generation

e Minimizing reactive power slack generation

e Minimizing adjustable branch reactance

¢ Minimizing adjustable bus shunts

¢ Minimizing or maximizing interface flows

¢ Minimizing or maximizing active power transfers

¢ Minimizing or maximizing reactive power transfers

e Minimizing or maximizing reactive generation reserve
e Minimizing load adjustments

SuperOPF also allows the user to define optimal power flow problem by combining the objec-
tive function with any number of constraints and controls, selectable from the following;:

e Bus voltage magnitude limits

e Branch flow limits (MW, MVar, MVA, Ampere)

¢ Interface flow limits (MW, MVar)

e Generator active power limits

e Generator reactive power limits

e Generation period reserve limits

e Transformer tap ratio limits

e Transformer phase-shift limits

e Adjustable bus shunt limits

e Adjustable branch reactance limits

¢ Adjustable load limits

e Voltage stability criteria

e Transient stability criteria

¢ Renewable energy penetrations
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Appendix: Simulations on Piece-wise Linear Cost Functions

Al. Data Preparation

This supplementary report creates a new CAISO system dataset and presents SuperOPF simula-
tion results on the dataset. The dataset is grabbed from a recent BSI VSA study case for CAISO.
The data header for the PSSE raw data file is shown in Table A1-1.

Table AO-1: The PSSE data header

0 100.0 / PSS/E-30.0 BY BSI VSA
S=DB62 Version VSA H STATIC 011613.xml D=CIM periodic 070213 033022.xml
Create on 03/10/15 11:20:03

The same loading pattern used in BSI VSA study is used to generate CPFLOW solutions under
different loading conditions. These CPFLOW solutions will be used as initial conditions for Su-
perOPF computations. It is known that there is no bus voltage limits specified in PSSE raw data
files. In creating the dataset, bus voltage limits are retrieved from the monitor list file of VSA
study. A portion of the monitor list file is shown in Table 1-2, which also illustrates the structure
of the file. The monitor voltage range for a bus specified in the file is used as the valid range of
voltage magnitude for the bus in SuperOPF computations; for other buses not covered in the
monitor list file, a generic range of [0.9, 1.1] is used as the bus voltage range for SuperOPF com-
putation. As shown in Table A1-2, it is also specified in the monitor list file the monitor branch-
es. For branches included in the monitor list file, thermal limit constraints will be imposed for
SuperOPF computation; no thermal limit constraints will be considered for other branches. The
RateA value for branches specified in the PSSE raw data file will be used as the thermal limits in
SuperOPF computation.

Table A0-2: The monitor list file

MONITOR BRANCHES
35901 14 1 /* MRGHLJ-GRNVLY 115 BR 2 1

END

MONITOR VOLTAGE RANGE BUS 18972 0.9500 1.0500 /* COPMT2 1-BUS-230
MONITOR VOLTAGE DEVIATION BUS 18972 0.0500 0.0500 /* COPMT2 1-BUS-230
MONITOR VOLTAGE RANGE BUS 18974 0.9522 1.0507 /* COPMT2 1-BUS-34.5
MONITOR VOLTAGE DEVIATION BUS 18974 0.0500 0.0500 /* COPMT2 1-BUS-34.5
END
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Table A0-3: The levelized cost of electricity (LCOE) for different generation resources !

Range for Total System LCOE Range for Total LCOE with Subsidies®
(2012 $/MWh) (2012 $/MWh)

Plant Type Minimum Average Maximum Minimum Average Maximum
Dispatchable Technologies
Conventional Coal 87.0 95.6 1144
IGCC 106.4 115.9 131.5
IGCC with CCS 137.3 147.4 163.3
Natural Gas-fired

Conventional Combined Cycle 61.1 66.3 75.8

Advanced Combined Cycle 59.6 64.4 73.6

Advanced CC with CCS 85.5 91.3 105.0

Conventional Combustion

Turbine 106.0 128.4 149.4

Advanced Combustion Turbine 96.9 103.8 119.8
Advanced Nuclear 92.6 96.1 102.0 82.6 86.1 92.0
Geothermal 46.2 47.9 50.3 43.1 44.5 46.4
Biomass 92.3 102.6 122.9
Non-Dispatchable Technologies
Wind 71.3 80.3 90.3
Wind — Offshore 168.7 204.1 271.0
Solar PV? 101.4 130.0 200.9 92.6 118.6 182.6
Solar Thermal 176.8 2431 388.0 162.6 223.6 356.7
Hydru:aelectrit:3 61.6 84.5 137.7

The generation cost data is created based on several data sources. The levelized cost of electrici-
ty (LCOE) for different generation resources, as shown in Table A1-3, is used as the reference
for generating the generation costs. The generation types are retrieved from QFER CEC-1304
Power Plant Owner Reporting Database published by California Energy Commission 2. Genera-
tor names are matched to the generator bus names recorded in the PSSE raw data file. Two
types of costs are assigned to the generations, namely, linear and piece-wise linear costs. The
cost values are drawn randomly following uniform distribution from the range of the LCOE
shown in Table 1-3. Figure 1-1 illustrates the piece-wise linear cost model. Piece-wise linear
costs are assigned to 10% of the total number of generators, each has 2 to 5 cost segments in the
range of the minimal and maximal generations; other generators are assigned with linear costs.

! Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2014, U.S. Energy
Information Administration.
2 http://www.energyalmanac.ca.gov/electricity/web_qgfer/source_files/q_WebWorks_QFERPIant_Table.txt.
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Figure A0-2: Illustration of the proxy variable for piece-wise costs

v

Figure A1-2 illustrates the technique for handling piece-wise linear costs. Basically, a proxy cost
variable, noted as z; for i-th generator with piece-wise linear cost, is added to the OPF problem
formulation, along with the following new set of proxy constraints

z; 2 ay;P; + by;
Z; 2 ;P + by;

where, K is the number of cost segments, ay;, -, ag; and by, ..., bk; are the cost parameters for
the lines of the cost segments.
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A2.

Simulation Settings

A21 The test system
The test system is a CAISO 7199-bus VSA study case, of the following dimensions:

Number of buses: 7199

Number of loads: 3004

Number of generators: 2097

Number of non-transformer branches: 6551
Number of transformers: 2533

Number of switched shunts: 579

Basecase System load: 76323.36 MW+ j 9872.40MVar

A2.2 Simulation Targets
Two types of objective functions are considered in the simulation, including

To minimize the system real power losses, and
To minimize the system production costs.

Co-optimization is carried out for worst “N-1" contingencies. All computations will be carried

out under different loading conditions.

In this simulation, for co-optimization with reserves, the generator(s) at the slack bus(es) is

treated as the reserve source. In other words, the remained generation capability of the slack

generator(s) will be considered as available up-spinning reserve for contingency scenarios.

Therefore, in the resulted OPF solutions, all non-slack generators will have same outputs across

all involved contingencies.

A23 Hardware and software
All the simulations in this report have been carried out on a personal computer of the following

configurations:

CPU: Intel Core i7-3820QM Quad 2.70GHz (Turbo Boost up to 3.7 GHz) with 8MB
shared L3 cache

Memory: 16GB 1600MHz DDR3L SDRAM

Storage: 512GB Flash Storage Drive

OS: Ubuntu Linux 15.04 AMD64, Linux Kernel 3.19.0, GCC5.1.1

Software: BSI SuperOPF v3.90

A2.4 Optimization variables
In the simulations, the following categories of optimization variables are adjusted by SuperOPF

in the OPF computations:

Vm: Bus voltage magnitudes.
Va: Bus voltage phase angles.
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* Pg: Generator real power outputs.

*  Qg: Generator reactive power outputs.
* t:ULTC transformer tap ratios.

* s:phase shifters.

*  b: switchable shunts.

A2.5 Stopping criteria
For the involved simulations, the stopping criteria for the OPF computation by BSI SuperOPF
are specified as follows:

* The maximum allowable iterations: 500.

* The convergence tolerance for P-mismatches is 0.01MW.

* The convergence tolerance for Q-mismatches is 0.1MVar.

* The convergence tolerance for thermal limits is 0.01MVA.

* The convergence tolerance for voltage magnitude bounds is 1e-4 p.u.

* The convergence tolerance for shunt device bounds is 0.01MVar.

* The convergence tolerance for transformer tap ratio bounds is 1e-4.

* The convergence tolerance for phase shifter phase angle bounds is 1le-4 rad.

A3. Simulation Results

A3.1 CPFLOW Computation

In this simulation, in order to obtain power flow solutions under different loading conditions,
BSI’s voltage stability analysis (VSA) program is used to perform a CPFLOW computation on
the test system. The “SDGE+CFE-BG-LOAD_INC” loading pattern is simulated, that is, loads
are increased only in area 11 “SDGE-22" and power flow solutions are computed until the nose
point of the P-V curves is reached, beyond which no power flow solutions exist.

Table A0-4: Loading conditions for simulation

76323.36 | 76489.11 | 77024.66 | 77541.53 | 78044.94 | 78532.81 | 78972.60 | 79052.42
#V:180 | #V:215
#V: 41 #V: 41 #V:37 #V: 42 #V: 49 #V: 49 4T 1 4T-1

Basecase system load margin: 2738.8MW. (“#V” for the number of voltage magnitude violations, “#T”

for the number of thermal limit violations)
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P-V Curves for Largest-Voltage-Drop Buses (500KV)
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Figure A0-3: P-V curves for selected buses (500KV, voltage drop greater than 0.15p.u.)

There are eight points on the P-V curves, starting from the base load until the nose point, ob-
tained by VSA CPFLOW computation, as summarized in Table A3-1 and depicted in Figure A3-
1. These power flow solutions are used as the initial conditions for OPF computation. It needs to
be noted that although these points correspond to power flow solutions under different loading
conditions, they can still have violations, therefore are not feasible solutions to the OPF problem,
as also shown in Table 3-1.

A3.2 Basecase Optimization under Different Loading Conditions
The first simulation is to use SuperOPF to perform system power loss and production cost min-

imization on the basecase system under different loading conditions.

Table A0-5: Basecase loss minimization under different loading conditions

Case | Load (MW) PLossO (MW) PLossl (MW) Reduction Iters Time
2672.63 1420.40 o
1 76323.36 (3.502%) (1.861%) 46.85% 77 7.95
2684.16 1423.96 o
- 76489.11 (3.509%) (1.862%) 46.95% 149 | 1547
2726.84 1438.40 o
3 77024.66 (3.540%) (1.867%) 47.25% 9 | 10.07
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B o | 5 | p | wen | e |
s | mowss | EPR MO0
AR
7 78972.60 (:;09911 SE‘;’/f) No OPF solution (problem infeasible)
- 79052.42 8193 679?’ /?) No OPF solution (problem infeasible)

The results on system power loss minimization are summarized in Table A3-2 and Figure A3-2.

In the results,

PLoss0: the CPFLOW solution losses and
PLoss1: the OPF solution losses.

Following observations can be drawn from the results:

The two largest loading conditions result infeasible OPF problems. We can have a visual
inspection from Figure A3-1, which also provides some clue about this, since for these
two largest loading conditions, in order to meet the demands, the selected bus voltage
magnitudes have to drop below their lower bounds (0.95 p.u. for bus 22891, 0.9 p.u. for
buses 22468 and 22473).

The infeasibility of the two largest loading conditions is formally validated with our fea-
sibility analysis engine. This engine transforms the task of finding feasible points to the
OPF problem into the task of computing stable equilibrium points (SEPs) and stable
equilibrium manifolds (SEM) in a tailored dynamical system. The findings is summa-
rized in Table A3-3, which reveals that, for both loading conditions, there is no SEMs
found that correspond to feasible regions, while only one null space SEP be found with
non-zero energy value. The null space SEP is in fact the point in the search domain that
is closest to be feasible.

The SuperOPF solver can robustly compute the OPF solutions under all feasible loading
conditions.

SuperOPF can effectively reduce almost half system losses under all loading conditions,
and the reduction rate tends to increase as system loads increase.

The OPF system losses (percentage with respect to the system load) increase as system
loads increase, but with lower rates than that of CPFLOW solutions. Both rates are high-
er than the increasing rate of the system total loads. In a word, such changes are nonlin-
ear.
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System Loss Minimization
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Figure A0-4: Basecase loss minimization under different loading conditions

Table A0-6: Infeasibility validation for the two largest loading conditions

SEP  SEP Energy Violations for SEP

_s | Six voltages with violations greater 0.001 p.u. .,
4
None 1 292 x 10 which the largest being 0.0114 p.u.

Seven voltages with violations greater 0.001 p.u.,

-4
None 1 391 x 10 which the largest being 0.0124 p.u.

The results on system production cost minimization are summarized in Table A3-4, Table A3-5
and Figure A3-3. In the results,

e PCost0: the CPFLOW solution costs and

e PCostl: the OPF solution costs.

Following observations can be drawn from the results:

e Table A3-4 summarizes the convergence of the computation under different loading
conditions. It can be seen that conventional IPM cannot converges for all loading condi-
tions; more specifically, it failed to converge for four among six feasible cases. In contrast,
for these non-convergent cases, our SuperOPF solution method can still successfully
converge to the desired OPF solutions.

o Therefore, SuperOPF solver can still robustly compute the OPF solutions under all feasi-
ble loading conditions.

e As shown in Table A3-5, SuperOPF can effectively reduce more than 12% system pro-
duction costs under all loading conditions. Although this is achieved on the synthetic
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cost data, it is still reasonable to expect the significant economic impact brought by Su-
perOPF for real-life production cost data.

e Asalso shown in Table A3-5, the rate of OPF system production cost reduction (the costs
of OPF solution with respect to that of the initial power flow solutions) tends to decrease
as system loading condition becomes heavier.

e As shown in Figure A3-3, the change of the production costs is almost linear with re-
spect to the change of system loads. This is because that the majority of the generators is
assigned a linear cost, while only about 10% of the generators is assigned a piece-wise
linear cost.

Table AO-7: Convergence for basecase cost minimization

Case Load (MW) 1 4\% SuperOPF
1 76323.36 Failed Converged
- 76489.11 Converged Converged
3 77024.66 Failed Converged
- 77541.53 Failed Converged
5 78044.94 Converged Converged
78532.81 Failed Converged
78972.60 No OPF solution (problem infeasible)
79052.42 No OPF solution (problem infeasible)

Table A0-8: Basecase cost minimization under different loading conditions

Case | Load (MW) PCost0 ($/Hr) PCostl ($/Hr) Reduction Iters Time
1 76323.36 8695662.83 7582236.18 12.80% 59 8.58
- 76489.11 8715101.45 7598383.37 12.81% 45 7.20
3 77024.66 8778607.18 7668672.15 12.64% 67 9.55
77541.53 8841738.16 7719517.58 12.69% 43 7.00
78044.94 8905250.95 7777127.93 12.67% 42 7.49

78532.81 8969524.78 7836365.40 12.63% 76 10.55
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Figure A0-5: Basecase cost minimization under different loading conditions

A3.3 Worst Contingencies and Post-Contingency Optimization
In this simulation, “N-1” transmission line contingencies are first generated by BSI VSA pro-

gram, then BSI VSA is used to estimate load margins for the post-contingency systems. Contin-
gencies are ranked in terms of their margins and worst contingencies are identified as those
ones with least load margins. There are two “N-1" transmission line contingencies identified by
BSI VSA, which have zero load margins; in other words, these contingencies are insecure in that
the system cannot support the system load demands should any of these contingences happen.
The details of these two worst contingencies are summarized in Table A3-6.

Table A0-9: Worst “N-1" contingencies

Basecase

2738.8MW
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OMW

MIDWAY-TAFT 115.0 KV Line

558 DISCONNECT BRANCH FROM BUS 11217 TO BUS 11093 CKT1 /*
AFTON-LUNA 345.0 KV Line
DISCONNECT BRANCH FROM BUS 34774 TO BUS 34776 CKT1 /*

OMW

Table A0-10: Convergence for post-contingency optimization

Loss Minimization Cost Minimization SuperOPF
Ctg_558 Ctg_2909 Ctg_558 Ctg_2909

1 76323.36 | Converged | Converged | Converged | Converged Converged
76489.11 | Converged Failed Converged | Converged Converged
77024.66 | Converged | Converged Failed Failed Converged
77541.53 | Converged | Converged | Converged | Converged Converged
78044.94 | Converged | Converged | Converged Failed Converged
78532.81 Failed Failed Failed Converged Converged

Table A3-7 summarizes the convergence of OPF computation for the post-contingency systems
under different loading conditions. It can be seen that conventional IPM cannot converge for all
post-contingency loading conditions; more specifically, it failed to converge for seven among 24
cases. In contrast, our SuperOPF solver is able to successfully converge to the desired OPF solu-
tions for both worst contingencies under all loading conditions.

The results on post-contingency power loss minimization are summarized in Table A3-8 and
Figure A3-4. In the results,

e PLossl: the basecase OPF solution losses,

e PLoss2: the post-contingency-558 OPF solution losses, and

e PLoss3: the post-contingency-2909 OPF solution losses.

Following observations can be drawn from the results:

e SuperOPF can robustly compute the OPF solutions under all feasible loading conditions,
even though the post-contingency systems are insecure. This is due to more controllable
generations available for OPF computation, instead of the single slack generator for
power flow computation (though other generations are changed before computation to
support the load demand).
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e Since only one transmission line is taken out in the “N-1” contingencies, its impact on

the resulted post-contingency system losses is not significant. As shown in Table A3-8,

the variations of the post-contingency OPF losses across are less than 2% with respect to

the basecase OPF losses.

e It can also be observed that, contingencies not necessary always increase the OPF losses.

As shown in Table A3-8, compared to the basecase system OPF losses shown in Table

A3-2, contingency #558 consistently increases the post-contingency OPF losses under all

loading conditions. In contrast, contingency #558 introduces almost not impact on the

OPF losses for loading conditions 1 through 5; for the loading condition 6, it can result

better loss reduction compared to the basecase OPF. This is related to another interesting

research topic of optimal line switching for different purposes, such as system loss re-

duction and transfer capability improvement.

Table A0-11: Post-contingency loss minimization under different loading conditions

Ctg_2909

PLoss2 (MW) | Iters | Time (s) | PLoss3 (MW) | Iters | Time (s)
76323.36 &45196 g,/f) 168 17.57 (1145601?’ /00) 80 8.40
76489.11 (ﬁ?&% 160 | 17.12 (11‘."5632'90/3 8 | 1286
77024.66 (11496(?34(%?) 176 18.26 (11455730 /06) 138 14.55
77541.53 (149812 223/21) 81 8.34 (1148576923 /00) 107 11.56
78044.94 (1153259?/3) 169 17.45 (114879951" /00) 84 8.75
mas | e | o | um | A2 | s | sa
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System Loss Minimization
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Figure A0-6: Post-contingency loss minimization under different loading conditions

The results on post-contingency production cost minimization are summarized in Table A3-9
and Figure A3-5. In the results,

e PCostl: the basecase OPF solution costs,

e PCost2: the post-contingency-558 OPF solution costs, and

e PCost3: the post-contingency-2909 OPF solution costs.
Similar observations can be drawn from the cost minimization results as from the above loss
minimization results.

Table A0-12: Post-contingency cost minimization under different loading conditions

Ctg_2909

PCost2 ($/Hr) PCost3 ($/Hr)
76323.36 7582858.57 55 5.79 7582601.81 44 4.61
76489.11 7602631.16 66 6.95 7599915.84 42 4.40
77024.66 7662677.88 53 8.15 7659999.27 57 13.44
77541.53 7721382.9 40 4.25 7719793.49 55 5.92
78044.94 7777963.71 65 6.97 7775321.97 91 15.62
78532.81 7839068.25 55 8.36 7838036.41 78 8.40
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Production Cost Minimization
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Figure A0-7: Post-contingency cost minimization under different loading conditions

A3.4 Base-case + Individual Contingency Co-optimization
In this simulation, SuperOPF is used to co-optimize the base case system and individual worst

contingency.

Table A0-13: Convergence for “basecase + single-contingency” co-optimization

Loss Minimization Cost Minimization SuperOPF
Ctg_558 Ctg_2909 Ctg_558 Ctg_2909

1 76323.36 | Converged Failed Failed Failed Converged
” 76489.11 | Converged Failed Failed Failed Converged
3 77024.66 | Converged Failed Converged Failed Converged
” 77541.53 | Converged Failed Failed Failed Converged
5 78044.94 | Converged | Converged | Converged | Converged Converged
-I 78532.81 Failed Converged Failed Failed Converged

Table A3-10 summarizes the convergence for the “basecase + single-contingency” co-
optimization under different loading conditions. It can be seen that conventional IPM cannot
converge for co-optimization under all loading conditions; more specifically, it failed to con-
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verge for 14 among 24 cases. In contrast, our SuperOPF solution method has successfully con-
verged to the desired OPF solutions for all contingencies under all loading conditions.

Table A0-14: “Basecase + single-contingency” co-optimization for loss minimization

Basecase + Ctg 558 Basecase + Ctg_2909

PLoss2 (MW) PLoss3 (MW)
1435.87 1435.57
76323.36 (1.881%) 63 14.86 (1.881%) 123 37.63
1439.39 1438.14
76489.11 (1.882%) 146 34.89 (1.880%) 189 53.72
1454.05 1454.58
3 77024.66 (1.888%) 225 52.94 (1.888%) 145 44.62
1472.60 1472.51
- 77541.53 (1.900%) 228 55.06 (1.899%) 61 24.22
1494.63 149491
5 78044.94 (1.915%) 123 28.71 (1.915%) 111 22.32
1540.30 1537.25
- 78532.81 (1.961%) 227 64.66 (1.957%) 92 21.69
System Loss Minimization
—0—PLoss1 (MW) —@—PLoss2 (MW) —@—PLoss3 (MW) PLoss1 (%) —@—PLoss2 (%) —@—PLoss3 (%)
1560 1.98%
1540 1.96%
3 1520 1.94%
2 1500 &
v 1.92% 2
S 1480 _E.
E 1460 1.90% g
:% 1440 1.88% &
1420 1.86%
1400 1.84%
76000 76500 77000 77500 78000 78500 79000

System Load (MW)

Figure A0-8: “Basecase + single-contingency” co-optimization for loss minimization

The results of co-optimization for power loss minimization are summarized in Table A3-11 and
Figure A3-6. In the results,

e PLossl: the basecase OPF solution losses,
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PLoss2: the “basecase + contingency-558" co-optimized OPF solution losses, and
PLoss3: the “basecase + contingency-2909” co-optimized OPF solution losses.

Following observations can be drawn from the results:

SuperOPF can robustly co-optimize the basecase system with worst contingency con-
straints under all feasible loading conditions, even though the contingencies are insecure.
Since only one transmission line is taken out in the “N-1” contingencies, its impact on
the resulted co-optimized system losses is also not significant. As shown in Table A3-11,
the variations of the co-optimized OPF losses across are about 1% with respect to the
basecase OPF losses.

The differences between different co-optimized system losses are less than that between
post-contingency minimized system losses.

Considering the optimization problem size (the number of optimization variables and
the number of constraints) is roughly doubled for the co-optimization problem as com-
pared to the basecase OPF problem, the computational time is also roughly doubled (per
iteration).

Due to the increased problem complexity, the computation tends to require more itera-
tions to converge to the co-optimized OPF solutions.

Table A0-15: “Basecase + single-contingency” co-optimization for cost minimization

Basecase + Ctg_558

Basecase + Ctg_2909

PCost2 ($/Hr) PCost3 ($/Hr) | Iters | Time (s)

76323.36 7714212.64 63 31.45 7714114.04 82 36.20

76489.11 7732790.70 61 20.70 7732559.20 105 42.17

77024.66 7798172.14 149 35.47 7793811.69 62 31.38

77541.53 7851769.17 51 29.49 7851824.31 71 33.91

78044.94 7910018.53 142 34.21 7910470.52 81 19.36

78532.81 7970888.42 264 81.39 7969248.91 181 60.20

The results on post-contingency production cost minimization are summarized in Table A3-12

and Figure A3-7. In the results,

PCostl: the basecase OPF solution costs,
PCost2: the “basecase + contingency-558" co-optimized OPF solution costs, and
PCost3: the “basecase + contingency-2909” co-optimized OPF solution costs.

Similar observations can be drawn from the co-optimized cost minimization results as from the

above co-optimized loss minimization results.
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Production Cost Minimization
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Figure A0-9: “Basecase + single-contingency” co-optimization for cost minimization

A3.5 Base-case + All Contingency Co-optimization
In this simulation, SuperOPF is used to co-optimize the base case system and both worst con-

tingencies.

Table A3-13 summarizes the convergence for the “basecase + all-contingency” co-optimization
under different loading conditions. Similarly, it can be seen that conventional IPM cannot con-
verge for co-optimization under all loading conditions; more specifically, it failed to converge
for eight among 12 cases. In contrast, our SuperOPF solution method is able to converge to the
desired solutions for all loading conditions, for both loss minimization and cost minimization.

Table A0-16: Convergence for “basecase + all-contingency” co-optimization

SuperOPF

Loss Minimization Cost Minimization
76323.36 Failed Failed Converged
76489.11 Converged Failed Converged
77024.66 Failed Failed Converged
77541.53 Failed Failed Converged
78044.94 Converged Converged Converged

Page 124 of 135



- 78532.81 Converged Failed Converged

The results of co-optimization for power loss minimization are summarized in Table A3-14. In

the results,

PLoss1 corresponds to the basecase OPF solution losses,
PLoss2 for the “basecase + contingency-558" co-optimized OPF solution losses, and
PLoss3 for the “basecase + contingency-2909” co-optimized OPF solution losses.

Following observations can be drawn from the results:

SuperOPF can still robustly co-optimize the basecase system with worst contingency
constraints under all feasible loading conditions, even though the contingencies are inse-
cure.

Since only one transmission line is taken out in the “N-1" contingencies, its impact on
the resulted co-optimized system losses is also not significant. As shown in Table A3-14,
the variations of the co-optimized OPF losses across are about 1% with respect to the
basecase OPF losses.

The differences between different co-optimized system losses are less than that between
post-contingency minimized system losses.

Considering the optimization problem size (the number of optimization variables and
the number of constraints) is roughly doubled for the co-optimization problem as com-
pared to the basecase OPF problem, the computational time is also roughly doubled (per
iteration).

Due to the increased problem complexity, the computation tends to require more itera-
tions to converge to the co-optimized OPF solutions.

Table A0-17: “Basecase + all-contingency” co-optimization

1
3

- 77541.53 1486.65 118 72.98 7851992.34 186 134.71
5

Loss Minimization Cost Minimization

PLoss6 ($/Hr)

PCost6 ($/Hr)

76323.36 1449.96 215 134.73 7714284.52 84 60.41

76489.11 1453.26 173 70.16 7732869.31 89 43.80

77024.66 1468.05 133 64.52 7793250.29 87 79.41

78044.94 1515.52 237 123.66 7910274.56 77 26.90

78532.81 1553.22 69 33.69 7970107.54 303 169.59
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Finally, for a better comparison, the results are condensed in two Figures. More specifically, a
condensed summary is provide in Figure A3-8 for the results on loss minimization for all in-
volved simulations, where

e PLossl: the basecase OPF solution losses,

e PLoss2: the post-contingency-558 OPF solution losses,

e PLoss3: the post-contingency-2909 OPF solution losses,

e PLoss4: the “basecase + contingency-558" co-optimized OPF solution losses,

o PLoss5: the “basecase + contingency-2909” co-optimized OPF solution losses, and
e PLoss6: the “basecase + all-contingency” co-optimized OPF solution losses.

Similarly, a condensed summary is provide in Figure 3-9 for the results on cost minimization for
all involved simulations, where

e PCostl: the basecase OPF solution costs,

e PCost2: the post-contingency-558 OPF solution costs,

e PCost3: the post-contingency-2909 OPF solution costs,

o PCost4: the “basecase + contingency-558” co-optimized OPF solution costs,

e PCostb: the “basecase + contingency-2909” co-optimized OPF solution costs, and
o PCost6: the “basecase + all-contingency” co-optimized OPF solution costs.

System Loss Minimization
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Figure A0-10: Summarized loss minimization results
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Production Cost Minimization
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Figure A0-11: Summarized cost minimization results

A4. Summary

In this report, a new dataset for SuperOPF computation is created. Based on this dataset, follow-
ing simulations have been carried out:
e SuperOPF computation on the basecase and post-contingency systems, and
e SuperOPF co-optimization for “basecase + single contingency” and “basecase + all con-
tingency”.
All simulations have been carried out for two OPF objectives, namely, system real power loss
minimization and production cost minimization, and under different loading conditions.

The simulation results have shown that SuperOPF can robustly compute the OPF solutions for
all the involved scenarios and under all feasible loading conditions, even though the post-
contingency systems are insecure. Along with its comprehensive modeling capability, it is
promising that SuperOPF can be a viable analysis tool for power industry.
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